Euler-Lehmer constants and a conjecture of Erdos

被引:30
作者
Murty, M. Ram [1 ]
Saradha, N. [2 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
基金
加拿大自然科学与工程研究理事会;
关键词
Euler's constant; Transcendence; Erdos conjecture; Linear forms in logarithms; TRANSCENDENTAL VALUES;
D O I
10.1016/j.jnt.2010.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euler-Lehmer constants gamma(a, q) are defined as the limits lim(x ->infinity) ( Sigma(n <= x) 1/n - logx/q) n equivalent to a (mod q) We show that at most one number in the infinite list gamma(a,q), 1 <= a < q, q >= 2, is an algebraic number. The methods used to prove this theorem can also be applied to study the following question of Erdos. If f : Z/qZ -> Q is such that f(a) = +/- 1 and f(q) = 0, then Erdos conjectured that Sigma(infinity)(n=1) f(n)/n not equal 0. If q equivalent to 3 (mod 4), we show that the Erdos conjecture is true. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2671 / 2682
页数:12
相关论文
共 18 条
[11]   Transcendental values of the digamma function [J].
Murty, M. Ram ;
Saradha, N. .
JOURNAL OF NUMBER THEORY, 2007, 125 (02) :298-318
[12]   Transcendental values of the p-adic digamma function [J].
Murty, M. Ram ;
Saradha, N. .
ACTA ARITHMETICA, 2008, 133 (04) :349-362
[13]  
Murty MR, 2009, INT J NUMBER THEORY, V5, P257
[14]   ON A CERTAIN INFINITE SERIES FOR A PERIODIC ARITHMETICAL FUNCTION [J].
OKADA, T .
ACTA ARITHMETICA, 1982, 40 (02) :143-153
[15]   Infinite sumas as linear combinations of polygamma functions [J].
Pilehrood, Kh. Hessami ;
Pilehrood, T. Hessami .
ACTA ARITHMETICA, 2007, 130 (03) :231-254
[16]   On the transcendence of infinite sums of values of rational functions [J].
Saradha, N ;
Tijdeman, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :580-592
[17]  
Saradha N., 2008, RAMANUJAN MATH SOC L, V6, P171
[18]  
Tijdeman R, 2002, NUMBER THEORY FOR THE MILLENNIUM III, P261