Euler-Lehmer constants and a conjecture of Erdos

被引:30
作者
Murty, M. Ram [1 ]
Saradha, N. [2 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
基金
加拿大自然科学与工程研究理事会;
关键词
Euler's constant; Transcendence; Erdos conjecture; Linear forms in logarithms; TRANSCENDENTAL VALUES;
D O I
10.1016/j.jnt.2010.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euler-Lehmer constants gamma(a, q) are defined as the limits lim(x ->infinity) ( Sigma(n <= x) 1/n - logx/q) n equivalent to a (mod q) We show that at most one number in the infinite list gamma(a,q), 1 <= a < q, q >= 2, is an algebraic number. The methods used to prove this theorem can also be applied to study the following question of Erdos. If f : Z/qZ -> Q is such that f(a) = +/- 1 and f(q) = 0, then Erdos conjectured that Sigma(infinity)(n=1) f(n)/n not equal 0. If q equivalent to 3 (mod 4), we show that the Erdos conjecture is true. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2671 / 2682
页数:12
相关论文
共 18 条
[1]  
[Anonymous], CONSTANTS RECORDS CO
[2]  
[Anonymous], 1973, J. Number Theory, DOI [10.1016/0022-314X(73)90048-6, DOI 10.1016/0022-314X(73)90048-6]
[3]  
[Anonymous], 1909, Q J PURE APPL MATH
[4]  
Baker A., 1975, TRANSCENDENTAL NUMBE
[5]  
Chowla S., 1970, J. Number Theory, V2, P120, DOI DOI 10.1016/0022-314X(70)90012-0
[6]  
GAUSS CF, 1813, COMMENT GOTTINGEN, V2, P86
[7]  
Kontsevich M., 2001, MATH UNLIMITED 2001, P771
[8]  
LEHMER DH, SELECTED PAPERS DH L, V2, P591
[9]  
Lehmer DH., 1975, Acta Arith, V27, P125, DOI [DOI 10.4064/AA-27-1-125-142, 10.4064/aa-27-1-125-142]
[10]  
Livingston Arthur E., 1965, Canad. Math. Bull, V8, P413