Simplified Generalized Gauss Newton Method for Nonlinear Ill-Posed Operator Equations in Hilbert Scales

被引:5
作者
Mahale, Pallavi [1 ]
Dadsena, Pradeep Kumar [2 ]
机构
[1] Visvesvaraya Natl Inst Technol Nagpur, Dept Math, Nagpur 440010, Maharashtra, India
[2] Govt Engn Coll Jagdalpur, Bastar 494001, Chattishgarah, India
关键词
Nonlinear Ill-Posed Operator Equations; Iterative Regularization Methods; Hilbert Scale; Stopping Index; PARAMETER CHOICE STRATEGIES; TIKHONOV REGULARIZATION; DISCREPANCY PRINCIPLE; ERROR-BOUNDS;
D O I
10.1515/cmam-2017-0045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the simplified generalized Gauss-Newton method in a Hilbert scale setting to get an approximate solution of the ill-posed operator equation of the form F(x) = y where F : D(F) subset of X -> Y is a nonlinear operator between Hilbert spaces X and Y. Under suitable nonlinearly conditions on F, we obtain an order optimal error estimate under the Morozov type stopping rule.
引用
收藏
页码:687 / 702
页数:16
相关论文
共 21 条
[1]  
BAKUSHINSKII AB, 1995, DOKL AKAD NAUK+, V344, P7
[2]  
BAKUSHINSKIY A. B., 1992, IMA J NUMER ANAL, V32, P1503
[3]   Semi-iterative regularization in Hilbert scales [J].
Egger, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :66-81
[4]  
Egger H., 2005, THESIS
[5]  
Engl H. W., 1996, MATH APPL, V375
[6]   Error bounds and parameter choice strategies for simplified regularization in Hilbert scales [J].
George, S ;
Nair, MT .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (02) :231-242
[7]   Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse-scattering problem [J].
Hohage, T .
INVERSE PROBLEMS, 1997, 13 (05) :1279-1299
[8]  
Jin QN, 2013, MATH COMPUT, V82, P1647
[9]   On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems [J].
Jin, Qinian ;
Tautenhahn, Ulrich .
NUMERISCHE MATHEMATIK, 2009, 111 (04) :509-558
[10]   Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales [J].
Jin, QN .
INVERSE PROBLEMS, 2000, 16 (01) :187-197