CovFrameNet: An Enhanced Deep Learning Framework for COVID-19 Detection

被引:33
|
作者
Oyelade, Olaide Nathaniel [1 ,2 ]
Ezugwu, Absalom El-Shamir [1 ]
Chiroma, Haruna [3 ]
机构
[1] Univ KwaZulu Natal Pietermaritzburg, Sch Math Stat & Comp Sci, ZA-3201 Pietermaritzburg, South Africa
[2] Ahmadu Bello Univ, Fac Phys Sci, Dept Comp Sci, Zaria 810211, Nigeria
[3] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan
关键词
COVID-19; X-ray imaging; Deep learning; Computed tomography; Feature extraction; Machine learning; National Institutes of Health; Image pre-processing; coronavirus; machine learning; deep learning; convolutional neural network; CNN; X-Ray; DIAGNOSIS;
D O I
10.1109/ACCESS.2021.3083516
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The novel coronavirus, also known as COVID-19, is a pandemic that has weighed heavily on the socio-economic affairs of the world. Research into the production of relevant vaccines is progressively being advanced with the development of the Pfizer and BioNTech, AstraZeneca, Moderna, Sputnik V, Janssen, Sinopharm, Valneva, Novavax and Sanofi Pasteur vaccines. There is, however, a need for a computational intelligence solution approach to mediate the process of facilitating quick detection of the disease. Different computational intelligence methods, which comprise natural language processing, knowledge engineering, and deep learning, have been proposed in the literature to tackle the spread of coronavirus disease. More so, the application of deep learning models have demonstrated an impressive performance compared to other methods. This paper aims to advance the application of deep learning and image pre-processing techniques to characterise and detect novel coronavirus infection. Furthermore, the study proposes a framework named CovFrameNet., which consist of a pipelined image pre-processing method and a deep learning model for feature extraction, classification, and performance measurement. The novelty of this study lies in the design of a CNN architecture that incorporates an enhanced image pre-processing mechanism. The National Institutes of Health (NIH) Chest X-Ray dataset and COVID-19 Radiography database were used to evaluate and validate the effectiveness of the proposed deep learning model. Results obtained revealed that the proposed model achieved an accuracy of 0.1, recall/precision of 0.85, F-measure of 0.9, and specificity of 1.0. Thus, the study's outcome showed that a CNN-based method with image pre-processing capability could be adopted for the pre-screening of suspected COVID-19 cases, and the confirmation of RT-PCR-based detected cases of COVID-19.
引用
收藏
页码:77905 / 77919
页数:15
相关论文
共 50 条
  • [21] Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach
    Awan, Mazhar Javed
    Bilal, Muhammad Haseeb
    Yasin, Awais
    Nobanee, Haitham
    Khan, Nabeel Sabir
    Zain, Azlan Mohd
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (19)
  • [22] A survey on deep learning models for detection of COVID-19
    Mozaffari, Javad
    Amirkhani, Abdollah
    Shokouhi, Shahriar B.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23) : 16945 - 16973
  • [23] Deep Learning in the Detection of Disinformation about COVID-19 in Online Space
    Machova, Kristina
    Mach, Marian
    Porezany, Michal
    SENSORS, 2022, 22 (23)
  • [24] A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset
    Elzeki O.M.
    Elfattah M.A.
    Salem H.
    Hassanien A.E.
    Shams M.
    PeerJ Computer Science, 2021, 7 : 1 - 35
  • [25] A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset
    Elzeki, Omar M.
    Abd Elfattah, Mohamed
    Salem, Hanaa
    Hassanien, Aboul Ella
    Shams, Mahmoud
    PEERJ COMPUTER SCIENCE, 2021,
  • [26] Checklist for responsible deep learning modeling of medical images based on COVID-19 detection studies
    Hryniewska, Weronika
    Bombinski, Przemyslaw
    Szatkowski, Patryk
    Tomaszewska, Paulina
    Przelaskowski, Artur
    Biecek, Przemyslaw
    PATTERN RECOGNITION, 2021, 118
  • [27] A deep ensemble learning framework for COVID-19 detection in chest X-ray images
    Asif, Sohaib
    Qurrat-ul-Ain
    Awais, Muhammad
    Amjad, Kamran
    Bilal, Omair
    Al-Sabri, Raeed
    Abdullah, Monir
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [28] Deep-COVID: Detection and Analysis of COVID-19 Outcomes Using Deep Learning
    Khalil, Muhammad Ibrahim
    Rehman, Saif Ur
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (22)
  • [29] Machine learning for medical imaging-based COVID-19 detection and diagnosis
    Rehouma, Rokaya
    Buchert, Michael
    Chen, Yi-Ping Phoebe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (09) : 5085 - 5115
  • [30] COVID-19 detection using cough sound analysis and deep learning algorithms
    Rao, Sunil
    Narayanaswamy, Vivek
    Esposito, Michael
    Thiagarajan, Jayaraman J.
    Spanias, Andreas
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2021, 15 (04): : 655 - 665