An alternative local polynomial estimator for the error-in-variables problem

被引:5
|
作者
Huang, Xianzheng [1 ]
Zhou, Haiming [2 ]
机构
[1] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Northern Illinois Univ, Div Stat, De Kalb, IL USA
关键词
Convolution; deconvolution; Fourier transform; measurement error; NONPARAMETRIC REGRESSION; DECONVOLUTION PROBLEM; DENSITY; MODELS;
D O I
10.1080/10485252.2017.1303060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating a regression function when a covariate is measured with error. Using the local polynomial estimator of Delaigle et al. [(2009), 'A Design-adaptive Local Polynomial Estimator for the Errors-in-variables Problem', Journal of the American Statistical Association, 104, 348-359] as a benchmark, wepropose an alternative way of solving the problem without transforming the kernel function. The asymptotic properties of the alternative estimator are rigorously studied. A detailed implementing algorithm and a computationally efficient bandwidth selection procedure are also provided. The proposed estimator is compared with the existing local polynomial estimator via extensive simulations and an application to the motorcycle crash data. The results show that the new estimator can be less biased than the existing estimator and is numerically more stable.
引用
收藏
页码:301 / 325
页数:25
相关论文
共 50 条
  • [1] Nonlinear Error-in-Variables Regression with the Error-in-Variables Distribution Estimated by Censored Data
    Hamada, M. S.
    Kaufeld, K. A.
    STATISTICS AND APPLICATIONS, 2021, 19 (01): : 115 - 124
  • [2] A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem
    Delaigle, Aurore
    Fan, Jianqing
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) : 348 - 359
  • [3] Error-in-variables models in calibration
    Lira, I.
    Grientschnig, D.
    METROLOGIA, 2017, 54 (06) : S133 - S145
  • [4] ERROR-IN-VARIABLES BIAS IN NONLINEAR CONTEXTS
    GRILICHES, Z
    RINGSTAD, V
    ECONOMETRICA, 1970, 38 (02) : 368 - +
  • [5] Hypotheses Testing for Error-in-Variables Models
    Patricia Gimenez
    Heleno Bolfarine
    Enrico A. Colosimo
    Annals of the Institute of Statistical Mathematics, 2000, 52 : 698 - 711
  • [6] Error-in-variables for rock failure envelope
    Zambrano-Mendoza, O
    Valkó, PP
    Russell, JE
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2003, 40 (01) : 137 - 143
  • [7] A BAYESIAN STUDY OF THE ERROR-IN-VARIABLES MODEL
    REILLY, PM
    PATINOLEAL, H
    TECHNOMETRICS, 1981, 23 (03) : 221 - 231
  • [8] THE USE OF THE ERROR-IN-VARIABLES MODEL IN TERPOLYMERIZATION
    DUEVER, TA
    ODRISCOLL, KF
    REILLY, PM
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1983, 21 (07) : 2003 - 2010
  • [9] Hypotheses testing for error-in-variables models
    Gimenez, P
    Bolfarine, H
    Colosimo, EA
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (04) : 698 - 711
  • [10] Error-in-variables modelling for operator learning
    Patel, Ravi G.
    Manickam, Indu
    Lee, Myoungkyu
    Gulian, Mamikon
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 190, 2022, 190