Machine Learning Phases of Strongly Correlated Fermions

被引:301
作者
Ch'ng, Kelvin [1 ]
Carrasquilla, Juan [2 ]
Melko, Roger G. [2 ,3 ]
Khatami, Ehsan [1 ]
机构
[1] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 03期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
QUANTUM; DIAGRAM;
D O I
10.1103/PhysRevX.7.031038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
引用
收藏
页数:9
相关论文
共 30 条
  • [21] THE BASIS OF THE ELECTRON THEORY OF METALS, WITH SPECIAL REFERENCE TO THE TRANSITION METALS
    MOTT, NF
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1949, 62 (355): : 416 - 422
  • [22] Nielsen M. A., 2015, NEURAL NETWORKS DEEP, V25
  • [23] Fermions in 3D Optical Lattices: Cooling Protocol to Obtain Antiferromagnetism
    Paiva, Thereza
    Loh, Yen Lee
    Randeria, Mohit
    Scalettar, Richard T.
    Trivedi, Nandini
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [24] Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet
    Sandvik, AW
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5196 - 5199
  • [25] PHASE-DIAGRAM OF THE HALF-FILLED 3D HUBBARD-MODEL
    SCALETTAR, RT
    SCALAPINO, DJ
    SUGAR, RL
    TOUSSAINT, D
    [J]. PHYSICAL REVIEW B, 1989, 39 (07): : 4711 - 4714
  • [26] Schoenholz SS, 2016, NAT PHYS, V12, P469, DOI [10.1038/NPHYS3644, 10.1038/nphys3644]
  • [27] Phase diagram of the three-dimensional Hubbard model at half filling
    Staudt, R
    Dzierzawa, M
    Muramatsu, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (03) : 411 - 415
  • [28] Stoudenmire EM, 2016, ADV NEUR IN, V29
  • [29] Learning thermodynamics with Boltzmann machines
    Torlai, Giacomo
    Melko, Roger G.
    [J]. PHYSICAL REVIEW B, 2016, 94 (16)
  • [30] Wang L, 2016, Phys. Rev. B, V94, DOI DOI 10.1103/PHYSREVB.94.195105