Machine Learning Phases of Strongly Correlated Fermions

被引:301
作者
Ch'ng, Kelvin [1 ]
Carrasquilla, Juan [2 ]
Melko, Roger G. [2 ,3 ]
Khatami, Ehsan [1 ]
机构
[1] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 03期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
QUANTUM; DIAGRAM;
D O I
10.1103/PhysRevX.7.031038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] [Anonymous], 2013, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2012.59
  • [3] [Anonymous], ARXIV160807848
  • [4] [Anonymous], ARXIV14103831
  • [5] Machine learning for many-body physics: The case of the Anderson impurity model
    Arsenault, Louis-Francois
    Lopez-Bezanilla, Alejandro
    von Lilienfeld, O. Anatole
    Millis, Andrew J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (15)
  • [6] MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1.
    BLANKENBECLER, R
    SCALAPINO, DJ
    SUGAR, RL
    [J]. PHYSICAL REVIEW D, 1981, 24 (08): : 2278 - 2286
  • [7] Solving the quantum many-body problem with artificial neural networks
    Carleo, Giuseppe
    Troyer, Matthias
    [J]. SCIENCE, 2017, 355 (6325) : 602 - 605
  • [8] Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
  • [9] Big Data of Materials Science: Critical Role of the Descriptor
    Ghiringhelli, Luca M.
    Vybiral, Jan
    Levchenko, Sergey V.
    Draxl, Claudia
    Scheffler, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [10] CONNECTION BETWEEN WORLD-LINE AND DETERMINANTAL FUNCTIONAL-INTEGRAL FORMULATIONS OF THE HUBBARD-MODEL
    HIRSCH, JE
    [J]. PHYSICAL REVIEW B, 1986, 34 (05): : 3216 - 3220