On Metric Dimension in Some Hex Derived Networks

被引:19
作者
Shao, Zehui [1 ]
Wu, Pu [1 ]
Zhu, Enqiang [1 ]
Chen, Lanxiang [2 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Fujian Normal Univ, Fujian Prov Key Lab Network Secur & Cryptol, Fujian Network & Informat Secur Ind Technol Dev B, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
关键词
robot navigation; sensor network; metric dimension; metric basis; HONEYCOMB; GRAPHS;
D O I
10.3390/s19010094
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The concept of a metric dimension was proposed to model robot navigation where the places of navigating agents can change among nodes. The metric dimension md (G) of a graph G is the smallest number k for which G contains a vertex set W, such that vertical bar W vertical bar = k and every pair of vertices of G possess different distances to at least one vertex in W. In this paper, we demonstrate that md (HDN1 (n)) = 4 for n >= 2. This indicates that in these types of hex derived sensor networks, the least number of nodes needed for locating any other node is four.
引用
收藏
页数:9
相关论文
共 22 条
  • [1] [Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
  • [2] Network discovery and verification
    Beerliova, Zuzana
    Eberhard, Felix
    Erlebach, Thomas
    Hall, Alexander
    Hoffmann, Michael
    Mihal'ak, Matus
    Ram, L. Shankar
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) : 2168 - 2181
  • [3] Chartrand V., 2003, Math. Bohem., V128, P379, DOI DOI 10.21136/MB.2003.134003
  • [4] ADDRESSING, ROUTING, AND BROADCASTING IN HEXAGONAL MESH MULTIPROCESSORS
    CHEN, MS
    SHIN, KG
    KANDLUR, DD
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1990, 39 (01) : 10 - 18
  • [5] Harary F., 1976, ARS COMBINATORIA, V2, P191, DOI DOI 10.1016/J.DAM.2012.10.018
  • [6] Imran M, 2014, ARS COMBINATORIA, V117, P113
  • [7] Javaid I., 2007, UTILITAS MATHEMATICA, V75, P21
  • [8] Mixed metric dimension of graphs
    Kelenc, Aleksander
    Kuziak, Dorota
    Taranenko, Andrei
    Yero, Ismael G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 429 - 438
  • [9] Landmarks in graphs
    Khuller, S
    Raghavachari, B
    Rosenfeld, A
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) : 217 - 229
  • [10] On minimum metric dimension of honeycomb networks
    Manuel, Paul
    Rajan, Bharati
    Rajasingh, Indra
    Monica, Chris M.
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (01) : 20 - 27