Minimal Representations and Algebraic Relations for Single Nested Products

被引:6
作者
Schneider, Carsten [1 ]
机构
[1] Johannes Kepler Univ Linz, Res Inst Symbol Computat, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
DIFFERENCE-EQUATIONS; SUMMATION; ALGORITHM;
D O I
10.1134/S0361768820020103
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, it has been shown constructively how a finite set of hypergeometric products, multibasic hypergeometric products or their mixed versions can be modeled properly in the setting of formal difference rings. Here special emphasis is put on robust constructions: whenever further products have to be considered, one can reuse -up to some mild modifications - the already existing difference ring. In this article we relax this robustness criteria and seek for another form of optimality. We will elaborate a general framework to represent a finite set of products in a formal difference ring where the number of transcendental product generators is minimal. As a bonus we are able to describe explicitly all relations among the given input products.
引用
收藏
页码:133 / 161
页数:29
相关论文
共 49 条
[1]   The two-mass contribution to the three-loop gluonic operator matrix element Agg, Q(3) [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Goedicke, A. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2018, 932 :129-240
[2]   Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 :33-112
[3]   Polynomial ring automorphisms, rational (w, σ)-canonical forms, and the assignment problem [J].
Abramov, S. A. ;
Petkovsek, M. .
JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (06) :684-708
[4]  
Abramov S.A., 1975, USSR COMP MATH MATH, V15, P216, DOI DOI 10.1016/0041-5553(75)90181-0
[5]  
Abramov S.A., 1971, ZH VYCH MAT MAT FIZ, V11, P1071
[6]   RATIONAL SOLUTIONS OF LINEAR-DIFFERENTIAL AND DIFFERENCE-EQUATIONS WITH POLYNOMIAL COEFFICIENTS [J].
ABRAMOV, SA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06) :7-12
[7]  
[Anonymous], 1993, THESIS
[8]  
[Anonymous], 1997, THESIS J KEPLER U LI
[9]  
[Anonymous], 1996, A=B
[10]   Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharplening of Wilf-Zeilberger theory [J].
Apagodu, Moa ;
Zeilberger, Doron .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (02) :139-152