Simultaneous Large Enhancements in Thermopower and Electrical Conductivity of Bulk Nanostructured Half-Heusler Alloys

被引:244
作者
Makongo, Julien P. A. [1 ,3 ]
Misra, Dinesh K. [3 ]
Zhou, Xiaoyuan [2 ]
Pant, Aditya [3 ]
Shabetai, Michael R. [3 ]
Su, Xianli [2 ,6 ]
Uher, Ctirad [2 ]
Stokes, Kevin L. [3 ,4 ]
Poudeu, Pierre F. P. [1 ,3 ,5 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Lab Emerging Energy & Elect Mat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA
[4] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA
[5] Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA
[6] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
关键词
HIGH-THERMOELECTRIC PERFORMANCE; BISMUTH-ANTIMONY TELLURIDE; FIGURE-OF-MERIT; SILICON NANOWIRES; EFFICIENCY; TRANSPORT; SUPERLATTICES; SUBSTITUTION; TEMPERATURE; DISTORTION;
D O I
10.1021/ja206491j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large reductions in the thermal conductivity of thermoelectrics using nanostructures have been widely demonstrated. Some enhancements in the thermopower through nanostructuring have also been reported. However, these improvements are generally offset by large drops in the electrical conductivity due to a drastic reduction in the mobility. Here, we show that large enhancements in the thermopower and electrical conductivity of half-Heusler (HH) phases can be achieved simultaneously at high temperatures through coherent insertion of nanometer scale full-Heusler (FH) inclusions within the matrix. The enhancements in the thermopower of the HH/FH nanocomposites arise from drastic reductions in the "effective" carrier concentration around 300 K. Surprisingly, the mobility increases drastically, which compensates for the decrease in the carrier concentration and minimizes the drop in the electrical conductivity. Interestingly, the carrier concentration in HH/FH nanocomposites increases rapidly with temperature, matching that of the HH matrix at high temperatures, whereas the temperature dependence of the mobility significantly deviates from the typical T(-alpha) law and slowly decreases (linearly) with rising temperature. This remarkable interplay between the temperature dependence of the carrier concentration and mobility in the nanocomposites results in large increases in the power factor at 775 K. In addition, the embedded FH nanostructures also induce moderate reductions in the thermal conductivity leading to drastic increases in the ZT of HH(1 - x)/FH(x) nanocomposites at 775 K By combining transmission electron microscopy and charge transport data, we propose a possible charge carrier scattering mechanism at the HH/FH interfaces leading to the observed anomalous electronic transport in the synthesized HH(1 - x)/FH(x) nanocomposites.
引用
收藏
页码:18843 / 18852
页数:10
相关论文
共 48 条
[1]   Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m [J].
Androulakis, John ;
Hsu, Kuei Fang ;
Pcionek, Robert ;
Kong, Huijun ;
Uher, Ctirad ;
DAngelo, Jonathan J. ;
Downey, Adam ;
Hogan, Tim ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2006, 18 (09) :1170-+
[2]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[3]  
[Anonymous], 2006, J APPL PHYS
[4]  
Biswas K, 2011, NAT CHEM, V3, P160, DOI [10.1038/nchem.955, 10.1038/NCHEM.955]
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J].
Caylor, JC ;
Coonley, K ;
Stuart, J ;
Colpitts, T ;
Venkatasubramanian, R .
APPLIED PHYSICS LETTERS, 2005, 87 (02)
[7]   (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials [J].
Culp, Slade R. ;
Simonson, J. W. ;
Poon, S. Joseph ;
Ponnambalam, V. ;
Edwards, J. ;
Tritt, Terry M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[8]   Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C -: art. no. 042106 [J].
Culp, SR ;
Poon, SJ ;
Hickman, N ;
Tritt, TM ;
Blumm, J .
APPLIED PHYSICS LETTERS, 2006, 88 (04) :1-3
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J].
Faleev, Sergey V. ;
Leonard, Francois .
PHYSICAL REVIEW B, 2008, 77 (21)