Coercivity estimates for integro-differential operators

被引:14
作者
Chaker, Jamil [1 ]
Silvestre, Luis [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
LITTLEWOOD-PALEY THEORY; BOLTZMANN-EQUATION; REGULARITY ISSUES; CUTOFF; FORMS;
D O I
10.1007/s00526-020-01764-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a general condition on the kernel of an integro-differential operator so that its associated quadratic form satisfies a coercivity estimate with respect to the H-s-seminorm.
引用
收藏
页数:20
相关论文
共 27 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I. Non-cutoff case and Maxwellian molecules [J].
Alexandre, R ;
El Safadi, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (06) :907-920
[3]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[4]   Some solutions of the Boltzmann equation without angular cutoff [J].
Alexandre, R .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (1-2) :327-358
[5]   A REVIEW OF BOLTZMANN EQUATION WITH SINGULAR KERNELS [J].
Alexandre, Radjesvarane .
KINETIC AND RELATED MODELS, 2009, 2 (04) :551-646
[6]   LITTLEWOOD-PALEY THEORY AND REGULARITY ISSUES IN BOLTZMANN HOMOGENEOUS EQUATIONS II. NON CUTOFF CASE AND NON MAXWELLIAN MOLECULES [J].
Alexandre, Radjesvarane ;
Elsafadi, Mouhamad .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (01) :1-11
[7]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[8]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[9]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[10]   Quadratic forms and Sobolev spaces of fractional order [J].
Bux, Kai-Uwe ;
Kassmann, Moritz ;
Schulze, Tim .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (03) :841-866