Anomalous-diffusion approach applied to the electrical response of water

被引:49
作者
Lenzi, E. K. [1 ]
Fernandes, P. R. G. [1 ]
Petrucci, T. [1 ]
Mukai, H. [1 ]
Ribeiro, H. V. [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 04期
关键词
IMPEDANCE SPECTROSCOPY; RANGE; EQUILIBRIUM; DYNAMICS; EQUATION; SYSTEMS;
D O I
10.1103/PhysRevE.84.041128
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the electrical response of Milli-Q deionized water by using a fractional diffusion equation of distributed order with the interfaces (i.e., the boundary conditions at the electrodes limiting the sample) governed by integrodifferential equations. We also consider that the positive and negative ions have the same mobility and that the electric potential profile across the sample satisfies Poisson's equation. In addition, the good agreement between the experimental data and this approach evidences the presence of anomalous diffusion due to the surface effects in this system.
引用
收藏
页数:5
相关论文
共 38 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Normal and anomalous diffusion in highly confined hard disk fluid mixtures [J].
Ball, C. D. ;
MacWilliam, N. D. ;
Percus, J. K. ;
Bowles, R. K. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (05)
[4]  
Barbero G., 2006, Adsorption phenomena and anchoring energy in nematic liquid crystals
[5]   Dielectric Dispersion of Water in the Frequency Range from 10 mHz to 30 MHz [J].
Batalioto, F. ;
Duarte, A. R. ;
Barbero, G. ;
Neto, A. M. F. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (10) :3467-3471
[6]   Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination [J].
Bisquert, J .
PHYSICAL REVIEW E, 2005, 72 (01)
[7]   Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk [J].
Bisquert, J .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[8]   An explanation of anomalous diffusion patterns observed in electroactive materials by impedance methods [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Pitarch, A .
CHEMPHYSCHEM, 2003, 4 (03) :287-+
[9]   Theory of the electrochemical impedance of anomalous diffusion [J].
Bisquert, J ;
Compte, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :112-120
[10]   Statistical mechanics of systems with long range interactions [J].
Bouchet, Freddy ;
Barre, Julien .
THIRD 21COE SYMPOSIUM: ASTROPHYSICS AS INTERDISCIPLINARY SCIENCE, 2006, 31 :18-26