Symmetric vibrations of higher dimensional nonlinear wave equations

被引:3
作者
Kosovalic, Nemanja [1 ]
Pigott, Brian [2 ]
机构
[1] Aimpoint Digital, Data Sci Practice, Boston, MA USA
[2] Wofford Coll, Spartanburg, SC 29303 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2022年 / 28卷 / 03期
关键词
Symmetric Hopf bifurcation; Diophantine equation; Wave equation; Symmetric group action; Lyapunov-Schmidt reduction; Implicit function theorem; SELF-EXCITED VIBRATIONS; PERIODIC-SOLUTIONS;
D O I
10.1007/s00029-022-00761-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a result characterizing conditions for the existence and uniqueness of solutions of a certain Diophantine equation, then using techniques from equivariant bifurcation theory, we apply the result to prove symmetric Hopf bifurcation type theorems for both dissipative and non-dissipative autonomous wave equations, for a large set of spatial dimensions. For the latter only the classical implicit function theorem is used. The set of admissible spatial dimensions is the union of the perfect squares together with finitely many non-perfect squares.
引用
收藏
页数:38
相关论文
共 50 条
[41]   Uniform attractors for nonautonomous wave equations with Nonlinear damping [J].
Sun, Chunyou ;
Cao, Daomin ;
Duan, Jinqiao .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02) :293-318
[42]   Existence of solutions for a class of nonlinear impulsive wave equations [J].
Georgiev, Svetlin G. ;
Zennir, Khaled .
RICERCHE DI MATEMATICA, 2022, 71 (01) :211-225
[43]   Discrete structures equivalent to nonlinear Dirichlet and wave equations [J].
Lovison, Alberto ;
Cardin, Franco ;
Bobbo, Alessia .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2009, 21 (01) :27-40
[44]   Decomposition of global solutions for a class of nonlinear wave equations [J].
Mavrogiannis, Georgios ;
Soffer, Avy ;
Wu, Xiaoxu .
LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (02)
[45]   Newton's method for nonlinear stochastic wave equations [J].
Leszczynski, Henryk ;
Wrzosek, Monika .
FORUM MATHEMATICUM, 2020, 32 (03) :595-605
[46]   Modulating Pulse Solutions for a Class¶of Nonlinear Wave Equations [J].
M. D. Groves ;
G. Schneider .
Communications in Mathematical Physics, 2001, 219 :489-522
[47]   Dimension of the global attractor for damped nonlinear wave equations [J].
Zhou, SF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) :3623-3631
[48]   Oscillation theorems for discrete nonlinear delay wave equations [J].
Kubiaczyk, I ;
Saker, SH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (12) :812-819
[49]   Nonlinear wave equations with degenerate damping and source terms [J].
Barbu, V ;
Lasiecka, I ;
Rammaha, MA .
CALORIMETRY IN PARTICLE PHYSICS, 2005, 240 :53-62
[50]   Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source [J].
Lasiecka, Irena ;
Toundykov, Daniel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (03) :898-910