A semi-Lagrangian approach for American Asian options under jump diffusion

被引:66
作者
D'Halluin, Y [1 ]
Forsyth, PA [1 ]
Labahn, G [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
continuously observed Asian option; semi-Lagrangian; American option; jump diffusion; implicit discretization;
D O I
10.1137/030602630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semi-Lagrangian method is presented to price continuously observed fixed strike Asian options. At each timestep a set of one-dimensional partial integrodifferential equations (PIDEs) is solved and the solution of each PIDE is updated using semi-Lagrangian timestepping. Crank-Nicolson and second-order backward differencing timestepping schemes are studied. Monotonicity and stability results are derived. With low volatility values, it is observed that the nonsmoothness at the strike in the payoff affects the convergence rate; a subquadratic convergence rate is observed.
引用
收藏
页码:315 / 345
页数:31
相关论文
共 52 条
[21]  
DEMPSTER MAH, 1998, J COMPUT FINANC, V2, P61
[22]   A NOTE ON AVERAGE RATE OPTIONS WITH DISCRETE SAMPLING [J].
DEWYNNE, JN ;
WILMOTT, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :267-276
[23]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[24]   The impact of jumps in volatility and returns [J].
Eraker, B ;
Johannes, M ;
Polson, N .
JOURNAL OF FINANCE, 2003, 58 (03) :1269-1300
[25]   Convergence analysis for a class of high-order semi-Lagrangian advection schemes [J].
Falcone, M ;
Ferretti, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :909-940
[26]  
Forsyth P A, 2002, REV DERIV RES, V5, P273
[27]   Quadratic convergence for valuing American options using a penalty method [J].
Forsyth, PA ;
Vetzal, KR .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2095-2122
[28]   Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws [J].
Fuhrmann, J ;
Langmach, H .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (1-2) :201-230
[29]  
HUGGER J, IN PRESS J COMPUT ME
[30]  
Hull J., 1993, The Journal of Derivatives, V1, P21