Hierarchical neural network-based hydrological perception model for underwater glider

被引:11
作者
Lei Lei [1 ,3 ]
Tang Tengfei [2 ]
Yang Gang [3 ]
Guo Jing [4 ]
机构
[1] City Univ Hong Kong, Dept Adv Design & Syst Engn, Kowloon Tong, Hong Kong, Peoples R China
[2] Wuhan Inst Technol, Dept Mech & Elect Engn, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Dept Mech Sci & Engn, Wuhan, Peoples R China
[4] Foshan Univ, Dept Automat, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater glider; Environment perception; Thermocline layer; Neural network; Deep learning; OPTIMIZATION;
D O I
10.1016/j.oceaneng.2022.112101
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The underwater glider is a robust ocean observation platform with low power consumption to achieve detailed ocean data. Hydrological information plays a key role in the ocean economy and environment evolution. It is often desirable to detect the hydrological and track their variation in the ocean observation task. This paper proposes a hierarchical neural network-based hierarchical perception model for the underwater glider to perceive the hydrological information in the ocean environment. First, a one-dimensional convolutional neural network is designed for detecting the thermocline layer. Then, the identified deep layer is predicted by a long short-term memory network. Furthermore, finite element analysis is conducted to explore the buoyancy loss of the underwater glider in the ocean. Finally, extensive experiments are conducted to demonstrate the effectiveness and accuracy of the proposed model.
引用
收藏
页数:9
相关论文
共 39 条
[1]  
Agarap A. F., 2018, arXiv
[2]  
Albawi S, 2017, I C ENG TECHNOL
[3]   Slocum Gliders Provide Accurate Near Real-Time Estimates of Baleen Whale Presence From Human-Reviewed Passive Acoustic Detection Information [J].
Baumgartner, Mark F. ;
Bonnell, Julianne ;
Corkeron, Peter J. ;
Van Parijs, Sofie M. ;
Hotchkin, Cara ;
Hodges, Ben A. ;
Thornton, Jacqueline Bort ;
Mensi, Bryan L. ;
Bruner, Scott M. .
FRONTIERS IN MARINE SCIENCE, 2020, 7
[4]  
Cruz N.A., 2010, OCEANS 2010 IEEE - Sydney, P1, DOI [10.1109/oceanssyd.2010. 5603883, DOI 10.1109/OCEANSSYD.2010.5603883]
[5]   A Glider-Compatible Optical Sensor for the Detection of Polycyclic Aromatic Hydrocarbons in the Marine Environment [J].
Cyr, Frederic ;
Tedetti, Marc ;
Besson, Florent ;
Bhairy, Nagib ;
Goutx, Madeleine .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[6]  
Dhont D, 2019, INT GEOSCI REMOTE SE, P7865, DOI [10.1109/igarss.2019.8898602, 10.1109/IGARSS.2019.8898602]
[7]   Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature [J].
Du, Yan ;
Dong, Xiaolong ;
Jiang, Xingwei ;
Zhang, Yuhong ;
Zhu, Di ;
Sun, Qiwei ;
Wang, Zhenzhan ;
Niu, Xinhua ;
Chen, Wen ;
Zhu, Cheng ;
Jing, Zhiyou ;
Tang, Shilin ;
Li, Yineng ;
Chen, Ju ;
Chu, Xiaoqing ;
Xu, Chi ;
Wang, Tianyu ;
He, Yinghui ;
Han, Bing ;
Zhang, Ying ;
Wang, Minyang ;
Wu, Wei ;
Xia, Yifan ;
Chen, Kun ;
Qian, Yu-Kun ;
Shi, Ping ;
Zhan, Haigang ;
Peng, Shiqiu .
PROGRESS IN OCEANOGRAPHY, 2021, 193
[8]   Machine-learning methods for stream water temperature prediction [J].
Feigl, Moritz ;
Lebiedzinski, Katharina ;
Herrnegger, Mathew ;
Schulz, Karsten .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) :2951-2977
[9]   Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-dominated sorting genetic algorithm [J].
Fu, Xiaoyun ;
Lei, Lei ;
Yang, Gang ;
Li, Baoren .
OCEAN ENGINEERING, 2018, 157 :339-349
[10]  
Gastauer Sven, 2021, EGU GEN ASSEMBLY C A, pEGU21