Graphene transport properties upon exposure to PMMA processing and heat treatments

被引:78
作者
Gammelgaard, Lene [1 ]
Caridad, Jose M. [1 ]
Cagliani, Alberto [1 ,2 ]
Mackenzie, David M. A. [1 ]
Petersen, Dirch H. [1 ]
Booth, Timothy J. [1 ,2 ]
Boggild, Peter [1 ,2 ]
机构
[1] Tech Univ Denmark, DTU Nanotech Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, CNG, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
graphene; PMMA; electrical devices; heat treatments; TRANSISTORS; HYSTERESIS; STRAIN;
D O I
10.1088/2053-1583/1/3/035005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 degrees C.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride [J].
Ahn, Gwanghyun ;
Kim, Hye Ri ;
Ko, Taeg Yeoung ;
Choi, Kyoungjun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Hong, Byung Hee ;
Ryu, Sunmin .
ACS NANO, 2013, 7 (02) :1533-1541
[2]   Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene [J].
Ahn, Youngkun ;
Kim, Hyein ;
Kim, Young-Hwan ;
Yi, Yeonjin ;
Kim, Seong-Il .
APPLIED PHYSICS LETTERS, 2013, 102 (09)
[3]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[4]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[5]   Large-area nanopatterned graphene for ultrasensitive gas sensing [J].
Cagliani, Alberto ;
Mackenzie, David Micheal Angus ;
Tschammer, Lisa Katharina ;
Pizzocchero, Filippo ;
Almdal, Kristoffer ;
Boggild, Peter .
NANO RESEARCH, 2014, 7 (05) :743-754
[6]   Effects of particle contamination and substrate interaction on the Raman response of unintentionally doped graphene [J].
Caridad, J. M. ;
Rossella, F. ;
Bellani, V. ;
Maicas, M. ;
Patrini, M. ;
Diez, E. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
[7]   Oxygen sensors made by monolayer graphene under room temperature [J].
Chen, C. W. ;
Hung, S. C. ;
Yang, M. D. ;
Yeh, C. W. ;
Wu, C. H. ;
Chi, G. C. ;
Ren, F. ;
Pearton, S. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (24)
[8]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[9]   Transport/Magnetotransport of High-Performance Graphene Transistors on Organic Molecule-Functionalized Substrates [J].
Chen, Shao-Yu ;
Ho, Po-Hsun ;
Shiue, Ren-Jye ;
Chen, Chun-Wei ;
Wang, Wei-Hua .
NANO LETTERS, 2012, 12 (02) :964-969
[10]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771