Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging

被引:70
|
作者
Wisely, C. Ellis [1 ]
Wang, Dong [2 ]
Henao, Ricardo [3 ]
Grewal, Dilraj S. [1 ]
Thompson, Atalie C. [1 ]
Robbins, Cason B. [1 ]
Yoon, Stephen P. [1 ]
Soundararajan, Srinath [1 ]
Polascik, Bryce W. [1 ]
Burke, James R. [4 ]
Liu, Andy [4 ]
Carin, Lawrence [2 ]
Fekrat, Sharon [1 ]
机构
[1] Duke Univ Hlth Syst, Dept Ophthalmol, Durham, NC USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[4] Duke Univ Hlth Syst, Dept Neurol, Durham, NC USA
关键词
retina; diagnostic tests; investigation; imaging; OPTICAL COHERENCE TOMOGRAPHY; MILD COGNITIVE IMPAIRMENT; DEMENTIA; ABNORMALITIES;
D O I
10.1136/bjophthalmol-2020-317659
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/Aims To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. Methods Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. Results 284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). Conclusion Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
引用
收藏
页码:388 / 395
页数:8
相关论文
共 50 条
  • [41] Analysis of Retinal Peripapillary Segmentation in Early Alzheimer's Disease Patients
    Salobrar-Garcia, Elena
    Hoyas, Irene
    Leal, Mercedes
    de Hoz, Rosa
    Rojas, Blanca
    Ramirez, Ana I.
    Salazar, Juan J.
    Yubero, Raquel
    Gil, Pedro
    Trivino, Alberto
    Ramirez, Jose M.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [42] Multi-class diagnosis of Alzheimer's disease using cascaded three dimensional-convolutional neural network
    Raju, Manu
    Gopi, Varun P.
    Anitha, V. S.
    Wahid, Khan A.
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1219 - 1228
  • [43] Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network
    Manu Raju
    Varun P. Gopi
    V. S. Anitha
    Khan A. Wahid
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1219 - 1228
  • [44] RETRACTED: An Exploration: Alzheimer's Disease Classification Based on Convolutional Neural Network (Retracted Article)
    Sethi, Monika
    Ahuja, Sachin
    Rani, Shalli
    Koundal, Deepika
    Zaguia, Atef
    Enbeyle, Wegayehu
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [45] Retinal Vessel Imaging and Alzheimer's Disease Risk
    Connell, N. A.
    Milberg, W.
    McGlinchey, R.
    Grande, L.
    Fisch, B.
    Asefzadeh, B.
    Coletta, N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [46] Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities
    Parent, Maxime J.
    Zimmer, Eduardo R.
    Shin, Monica
    Kang, Min Su
    Fonov, Vladimir S.
    Mathieu, Axel
    Aliaga, Antonio
    Kostikov, Alexey
    Do Carmo, Sonia
    Dea, Doris
    Poirier, Judes
    Soucy, Jean-Paul
    Gauthier, Serge
    Cuello, A. Claudio
    Rosa-Neto, Pedro
    JOURNAL OF NEUROSCIENCE, 2017, 37 (50) : 12263 - 12271
  • [47] Multimodal investigation of melanopsin retinal ganglion cells in Alzheimer's disease
    La Morgia, Chiara
    Mitolo, Micaela
    Romagnoli, Martina
    Maserati, Michelangelo Stanzani
    Evangelisti, Stefania
    De Matteis, Maddalena
    Capellari, Sabina
    Bianchini, Claudio
    Testa, Claudia
    Vandewalle, Gilles
    Santoro, Aurelia
    Carbonelli, Michele
    D'Agati, Pietro
    Filardi, Marco
    Avanzini, Pietro
    Barboni, Piero
    Zenesini, Corrado
    Baccari, Flavia
    Liguori, Rocco
    Tonon, Caterina
    Lodi, Raffaele
    Carelli, Valerio
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2023, 10 (06): : 918 - 932
  • [48] Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities
    Aderghal, Karim
    Afdel, Karim
    Benois-Pineau, Jenny
    Catheline, Gwenaelle
    HELIYON, 2020, 6 (12)
  • [49] Perspectives for Multimodal Neurochemical and Imaging Biomarkers in Alzheimer's Disease
    Teipel, Stefan J.
    Sabri, Osama
    Grothe, Michel
    Barthel, Henryk
    Prvulovic, David
    Buerger, Katharina
    Bokde, Arun L. W.
    Ewers, Michael
    Hoffmann, Wolfgang
    Hampel, Harald
    JOURNAL OF ALZHEIMERS DISEASE, 2013, 33 : S329 - S347
  • [50] Detection of Alzheimer Disease on Online Handwriting Using 1D Convolutional Neural Network
    Dao, Quang
    El-Yacoubi, Mounim A.
    Rigaud, Anne-Sophie
    IEEE ACCESS, 2023, 11 : 2148 - 2155