Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging

被引:70
|
作者
Wisely, C. Ellis [1 ]
Wang, Dong [2 ]
Henao, Ricardo [3 ]
Grewal, Dilraj S. [1 ]
Thompson, Atalie C. [1 ]
Robbins, Cason B. [1 ]
Yoon, Stephen P. [1 ]
Soundararajan, Srinath [1 ]
Polascik, Bryce W. [1 ]
Burke, James R. [4 ]
Liu, Andy [4 ]
Carin, Lawrence [2 ]
Fekrat, Sharon [1 ]
机构
[1] Duke Univ Hlth Syst, Dept Ophthalmol, Durham, NC USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[4] Duke Univ Hlth Syst, Dept Neurol, Durham, NC USA
关键词
retina; diagnostic tests; investigation; imaging; OPTICAL COHERENCE TOMOGRAPHY; MILD COGNITIVE IMPAIRMENT; DEMENTIA; ABNORMALITIES;
D O I
10.1136/bjophthalmol-2020-317659
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/Aims To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. Methods Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. Results 284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). Conclusion Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
引用
收藏
页码:388 / 395
页数:8
相关论文
共 50 条
  • [21] Retinal Amyloid Imaging for Screening Alzheimer's Disease
    Tadokoro, Koh
    Yamashita, Toru
    Kimura, Shuhei
    Nomura, Emi
    Ohta, Yasuyuki
    Omote, Yoshio
    Takemoto, Mami
    Hishikawa, Nozomi
    Morihara, Ryuta
    Morizane, Yuki
    Abe, Koji
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 83 (02) : 927 - 934
  • [22] Adaptive Weights Integrated Convolutional Neural Network for Alzheimer's Disease Diagnosis
    Wang, Xinying
    Wang, Wanqiu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (12) : 2893 - 2900
  • [23] A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease
    Li, Fan
    Liu, Manhua
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 323 : 108 - 118
  • [24] Retinal thickness and vascular parameters using optical coherence tomography in Alzheimer's disease: a meta-analysis
    Sheriff, Samran
    Shen, Ting
    Abdal, Sandra
    Saks, Danit
    Mirzaei, Mehdi
    Gupta, Veer
    Chitranshi, Nitin
    You, Yuyi
    Schultz, Angela
    Graham, Stuart
    Gupta, Vivek
    NEURAL REGENERATION RESEARCH, 2023, 18 (11) : 2504 - 2513
  • [25] Retinal biometric identification using convolutional neural network
    Rodiah
    Madenda, Sarifuddin
    Susetianingtias, Diana Tri
    Fitrianingsih
    Adlina, Dea
    Arianty, Rini
    COMPUTER OPTICS, 2021, 45 (06) : 865 - 872
  • [26] Potential Utility of Retinal Imaging for Alzheimer's Disease: A Review
    Liao, Huan
    Zhu, Zhuoting
    Peng, Ying
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [27] Diagnosis of Alzheimer's, Parkinson's disease and frontotemporal dementia using a generative adversarial deep convolutional neural network
    Noella, R. S. Nancy
    Priyadarshini, J.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03) : 2845 - 2854
  • [28] Diagnosis of Alzheimer’s, Parkinson’s disease and frontotemporal dementia using a generative adversarial deep convolutional neural network
    R. S. Nancy Noella
    J. Priyadarshini
    Neural Computing and Applications, 2023, 35 : 2845 - 2854
  • [29] Classifying Alzheimer's disease with brain imaging and genetic data using a neural network framework
    Ning, Kaida
    Chen, Bo
    Sun, Fengzhu
    Hobel, Zachary
    Zhao, Lu
    Matloff, Will
    Toga, Arthur W.
    NEUROBIOLOGY OF AGING, 2018, 68 : 151 - 158
  • [30] Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network
    Basher, Abol
    Kim, Byeong C.
    Lee, Kun Ho
    Jung, Ho Yub
    IEEE ACCESS, 2021, 9 : 29870 - 29882