Creatine transporters: A reappraisal

被引:56
作者
Speer, O
Neukomm, LJ
Murphy, RM
Zanolla, E
Schlattner, U
Henry, H
Snow, RJ
Wallimann, T
机构
[1] ETH Honggerberg, ETH Zurich, Inst Cell Biol, CH-8093 Zurich, Switzerland
[2] Deakin Univ, Sch Hlth Sci, Burwood, Australia
[3] Univ Hosp, Clin Chem Labs, Lausanne, Switzerland
关键词
creatine transporter isoforms; mitochondrial membrane transporters; 12-transmembrane helix transporter family; creatine pools; bioenergetics; phosphocreatine shuttle; creatine kinase and mitochondria;
D O I
10.1023/B:MCBI.0000009886.98508.e7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Creatine (Cr) plays a key role in cellular energy metabolism and is found at high concentrations in metabolically active cells such as skeletal muscle and neurons. These, and a variety of other cells, take up Cr from the extra cellular fluid by a high affinity Na+/Cl-- dependent creatine transporter (CrT). Mutations in the crt gene, found in several patients, lead to severe retardation of speech and mental development, accompanied by the absence of Cr in the brain. In order to characterize CrT protein(s) on a biochemical level, antibodies were raised against synthetic peptides derived from the N- and C-terminal cDNA sequences of the putative CrT-1 protein. In total homogenates of various tissues, both antibodies, directed against these different epitopes, recognize the same two major polypetides on Western blots with apparent Mr of 70 and 55 kDa. The C-terminal CrT antibody (alpha-CrTCOOH) immunologically reacts with proteins located at the inner membrane of mitochondria as determined by immuno-electron microscopy, as well as by subfractionation of mitochondria. Cr-uptake experiments with isolated mitochondria showed these organelles were able to transport Cr via a sulfhydryl-reagent-sensitive transporter that could be blocked by anti-CrT antibodies when the outer mitochondrial membrane was permeabilized. We concluded that mitochondria are able to specifically take-up Cr from the cytosol, via a low-affinity CrT, and that the above polypeptides would likely represent mitochondrial CrT( s). However, by mass spectrometry techniques, the immunologically reactive proteins, detected by our anti-CrT antibodies, were identified as E2 components of the alpha-keto acid dehydrogenase multi enzyme complexes, namely pyruvate dehydrogenase (PDH), branched chain keto acid dehydrogenase (BC-KADH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH). The E2 components of PDH are membrane associated, whilst it would be expected that a mitochondrial CrT would be a transmembrane protein. Results of phase partitioning by Triton X-114, as well as washing of mitochondrial membranes at basic pH, support that these immunologically cross-reactive proteins are, as expected for E2 components, membrane associated rather than transmembrane. On the other hand, the fact that mitochondrial Cr uptake into intact mitoplast could be blocked by our alpha-CrTCOOH antibodies, indicate that our antisera contain antibodies reactive to proteins involved in mitochondrial transport of Cr. The presence of specific antibodies against CrT is supported by results from plasma membrane vesicles isolated from human and rat skeletal muscle, where both 55 and 70 kDa polypeptides disappeared and a single polypeptide with an apparent electrophoretic mobility of similar to 60 kDa was enriched. This latter is most likely representing the genuine plasma membrane CrT. Due to the fact that all anti-CrT antibodies that were independently prepared by several laboratories seem to cross-react with non-CrT polypeptides, specifically with E2 components of mitochondrial dehydrogenases, further research is required to characterise on a biochemical/ biophysical level the CrT polypeptides, e. g. to determine whether the similar to 60 kDa polypeptide is indeed a bona-fide CrT and to identify the mitochondrial transporter that is able to facilitate Cr-uptake into these organelles. Therefore, the anti-CrT antibodies available so far should only be used with these precautions in mind. This holds especially true for quantitation of CrT polypeptides by Western blots, e. g. when trying to answer whether CrT's are up- or down-regulated by certain experimental interventions or under pathological conditions. In conclusion, we still hold to the scheme that besides the high-affinity and high- efficiency plasmalemma CrT there exists an additional low affinity high Km Cr uptake mechanism in mitochondria. However, the exact biochemical nature of this mitochondrial creatine transport, still remains elusive. Finally, similar to the creatine kinase (CK) isoenzymes, which are specifically located at different cellular compartments, also the substrates of CK are compartmentalized in cytosolic and mitochondrial pools. This is in line with C-14-Cr-isotope tracer studies and a number of [P-31]-NMR magnetization transfer studies, as well as with recent [H-1]-NMR spectroscopy data.
引用
收藏
页码:407 / 424
页数:18
相关论文
共 92 条
[1]   BARTH SYNDROME - CLINICAL-FEATURES AND CONFIRMATION OF GENE LOCALIZATION TO DISTAL XQ28 [J].
ADES, LC ;
GEDEON, AK ;
WILSON, MJ ;
LATHAM, M ;
PARTINGTON, MW ;
MULLEY, JC ;
NELSON, J ;
LUI, K ;
SILLENCE, DO .
AMERICAN JOURNAL OF MEDICAL GENETICS, 1993, 45 (03) :327-334
[2]   ISOLATION AND PROPERTIES OF CREATINE-KINASE FROM THE BREAST MUSCLE OF TROPICAL FRUIT BAT, EIDOLON-HELVUM (KERR) [J].
AFOLAYAN, A ;
DAINI, OA .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1986, 85 (02) :463-468
[3]   Biochemistry and autoimmune response to the 2-oxoacid dehydrogenase complexes in primary biliary cirrhosis [J].
Bassendine, MF ;
Jones, DEJ ;
Yeaman, SJ .
SEMINARS IN LIVER DISEASE, 1997, 17 (01) :49-60
[4]   THE CREATINE-CREATINE PHOSPHATE ENERGY SHUTTLE [J].
BESSMAN, SP ;
CARPENTER, CL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1985, 54 :831-862
[5]   X-linked creatine deficiency syndrome:: A novel mutation in creatine transporter gene SLC6A8 [J].
Bizzi, A ;
Bugiani, M ;
Salomons, GS ;
Hunneman, DH ;
Moroni, I ;
Estienne, M ;
Danesi, U ;
Jakobs, C ;
Uziel, G .
ANNALS OF NEUROLOGY, 2002, 52 (02) :227-231
[6]  
BLAKELY RD, 1994, J EXP BIOL, V196, P263
[7]   Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine [J].
Boehm, E ;
Chan, S ;
Monfared, M ;
Walliman, T ;
Clarke, K ;
Neubauer, S .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 284 (02) :E399-E406
[8]  
BOLHUIS PA, 1991, AM J HUM GENET, V48, P481
[9]  
BOLLARD ME, FEBS LETT, V553, P73
[10]   Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study [J].
Braissant, O ;
Henry, H ;
Loup, M ;
Eilers, B ;
Bachmann, C .
MOLECULAR BRAIN RESEARCH, 2001, 86 (1-2) :193-201