String cohomology of Calabi-Yau hypersurfaces via mirror symmetry

被引:28
作者
Borisov, LA [1 ]
Mavlyutov, AR
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
toric varieties; intersection cohomology; mirror symmetry;
D O I
10.1016/S0001-8708(03)00007-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a construction of string cohomology spaces for Calabi-Yau hypersurfaces that arise in Batyrev's mirror symmetry construction. The spaces are defined explicitly in terms of the corresponding reflexive polyhedra in a mirror-symmetric manner. We draw connections with other approaches to the string cohomology, in particular with the work of Chen and Ruan. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 390
页数:36
相关论文
共 20 条
[1]   Torification and factorization of birational maps [J].
Abramovich, D ;
Karu, K ;
Matsuki, K ;
Lodarczyk, JLW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :531-572
[2]  
Batyrev V. V., 1998, Integrable systems and algebraic geometry, P1
[3]  
Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
[4]  
Batyrev Victor V., 1999, J. Eur. Math. Soc. (JEMS), V1, P5, DOI 10.1007/PL00011158
[5]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409
[6]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[7]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[8]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203
[9]  
Borisov LA, 2000, J ALGEBRAIC GEOM, V9, P289
[10]   Vertex algebras and mirror symmetry [J].
Borisov, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 215 (03) :517-557