Monte-Carlo simulation on domain patterns in ferroelectric model lattice

被引:2
|
作者
Liu, JM [1 ]
Wang, X
机构
[1] Nanjing Univ, Solid State Microstruct Lab, Nanjing 210093, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY | 2004年 / 106卷 / 03期
基金
中国国家自然科学基金;
关键词
domain structure; ferroelectric model; Monte-Carlo simulation;
D O I
10.1016/j.mseb.2003.09.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The domain formation and structures in a ferroelectric tetragonal model system in which the dipole-dipole interaction and gradient domain wall energy are taken into account is studied using Monte-Carlo method. It is revealed that the 90degrees-domain walls with preferred head-to-tail dipole alignment coexist with the 180degrees-walls in the domain configuration. The dipole-alignment patterns at various temperatures and system parameters are investigated, indicating clearly the suppression in magnitude of dipoles on the domain walls in order to lower the system free energy. The effect of temperature and gradient wall energy on the hysteresis loop is also simulated. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [1] Monte-Carlo simulation on the dipole alignment in ferroelectric square lattice
    Liu, JM
    Wang, X
    Chan, HLW
    Choy, CL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 113 (01): : 67 - 72
  • [2] A Monte-Carlo approach of domain switching in ferroelectric Potts lattice under external electric field
    Liu, JM
    Liu, ZG
    MATERIALS LETTERS, 1998, 36 (1-4) : 17 - 23
  • [3] A Monte-Carlo approach of remanence enhancement effect in ferroelectric Potts lattice
    Liu, JM
    Wu, ZC
    Cao, GH
    Liu, XH
    Liu, ZG
    FERROELECTRICS, 2001, 252 (1-4) : 357 - 365
  • [4] The model of multivariate dependence and Monte-Carlo simulation
    Yi Wei-De
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON FINANCIAL ENGINEERING AND RISK MANAGEMENT 2008, 2008, : 286 - 289
  • [5] Monte-Carlo Simulation of Error Sort Model
    Fukuda, Ryoji
    Oka, Kaoru
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 479 - +
  • [6] MONTE-CARLO SIMULATION OF DIFFUSION PROCESS ON QUASI-LATTICE
    SASAJIMA, Y
    SAKAYORI, K
    ICHIMURA, M
    IMABAYASHI, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (5A): : 1417 - 1423
  • [7] The check of the elastic scattering model in Monte-Carlo simulation
    Stary, V
    MIKROCHIMICA ACTA, 1996, : 559 - 572
  • [8] Monte-Carlo Simulation for Mahjong
    Chen, Jr-Chang
    Tang, Shih-Chieh
    Wu, I-Chen
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2022, 38 (04) : 775 - 790
  • [9] The role of phase interface energy in martensitic transformations: A lattice Monte-Carlo simulation
    Yastrebov, V. A.
    Fischlschweiger, M.
    Cailletaud, G.
    Antretter, T.
    MECHANICS RESEARCH COMMUNICATIONS, 2014, 56 : 37 - 41
  • [10] A MONTE-CARLO SIMULATION OF THE ELECTRODEPOSITION PROCESS
    LI, DY
    SZPUNAR, JA
    JOURNAL OF ELECTRONIC MATERIALS, 1993, 22 (06) : 653 - 657