Wavelet methods in (financial) time-series processing

被引:71
作者
Struzik, ZR [1 ]
机构
[1] Ctr Math & Comp Sci, CWI, Amsterdam, Netherlands
来源
PHYSICA A | 2001年 / 296卷 / 1-2期
关键词
econophysics; wavelet transform; Holder exponent; local correlation;
D O I
10.1016/S0378-4371(01)00101-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We briefly describe the major advantages of using the wavelet transform for the processing of financial time series on the example of the S&P index. In particular. we show how to uncover the local scaling (correlation) characteristics of the S&P index with the wavelet based effective Holder exponent (Struzik, in: Fractals: Theory and Applications in Engineering, Dekking, Levy Vehel, Lutton, Tricot, Springer, Berlin, 1999; Fractals 8 (2) (2000) 163). We use it to display the local spectral (multifractal) contents of the S&P index. In addition to this, we analyse the collective properties of the local correlation exponent as perceived by the trader, exercising various time horizon analyses of the index. We observe an intriguing interplay between such (different) time horizons. Heavy oscillations at shorter time horizons, which seem to be accompanied by a steady decrease of correlation level for longer time horizons, seem to be characteristic patterns before the biggest crashes of the index. We find that this way of local presentation of scaling properties may be of economic importance. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 28 条
[1]  
[Anonymous], OPERATIONAL RES
[2]   THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 213 (1-2) :232-275
[3]   Direct causal cascade in the stock market [J].
Arneodo, A ;
Muzy, JF ;
Sornette, D .
EUROPEAN PHYSICAL JOURNAL B, 1998, 2 (02) :277-282
[4]  
CARMONA R, 1997, IEEE T SIGNAL PROCES, V45, P480
[5]  
DAUBECHIES I, 1992, 19 LECT WAVELETS
[6]   Data mining: Statistics and more? [J].
Hand, DJ .
AMERICAN STATISTICIAN, 1998, 52 (02) :112-118
[7]  
HAND DJ, 2000, PRINCIPLES DATA MINI
[8]  
Holschneider M., 1995, WAVELETS ANAL TOOL
[9]   Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis [J].
Ivanov, PC ;
Rosenblum, MG ;
Peng, CK ;
Mietus, J ;
Havlin, S ;
Stanley, HE ;
Goldberger, AL .
NATURE, 1996, 383 (6598) :323-327
[10]   Multifractality in human heartbeat dynamics [J].
Ivanov, PC ;
Amaral, LAN ;
Goldberger, AL ;
Havlin, S ;
Rosenblum, MG ;
Struzik, ZR ;
Stanley, HE .
NATURE, 1999, 399 (6735) :461-465