Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration

被引:29
|
作者
Liu, Fengyi [1 ,2 ,3 ]
Wang, Xu [1 ,2 ,3 ]
Li, Yuzhou [1 ,2 ,3 ]
Ren, Mingxing [1 ,2 ,3 ]
He, Ping [1 ,2 ,3 ]
Wang, Lu [1 ,2 ,3 ]
Xu, Jie [1 ,2 ,3 ]
Yang, Sheng [1 ,2 ,3 ]
Ji, Ping [1 ,2 ,3 ]
机构
[1] Chongqing Med Univ, Coll Stomatol, Chongqing, Peoples R China
[2] Chongqing Key Lab Oral Dis & Biomed Sci, Chongqing, Peoples R China
[3] Chongqing Municipal Key Lab Oral Biomed Engn High, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartilage regeneration; Stem cell therapy; Injectable hydrogel; GelMA; PAMAM; STEM-CELLS; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; TISSUE; DIFFERENTIATION; REPAIR; SCAFFOLDS; DESIGN;
D O I
10.1186/s13287-022-02705-6
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Use of autologous adipose-derived mesenchymal stem cells for creation of laryngeal cartilage
    Zhang, Hongji
    Voytik-Harbin, Sherry
    Brookes, Sarah
    Zhang, Lujuan
    Wallace, Joseph
    Parker, Noah
    Halum, Stacey
    LARYNGOSCOPE, 2018, 128 (04) : E123 - E129
  • [32] Adipose-Derived Stem Cells and Nerve Regeneration: Promises and Pitfalls
    Faroni, Alessandro
    Terenghi, Giorgio
    Reid, Adam J.
    TISSUE ENGINEERING OF THE PERIPHERAL NERVE: STEM CELLS AND REGENERATION PROMOTING FACTORS, 2013, 108 : 121 - +
  • [33] Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells
    Alio Del Barrio, Jorge L.
    De la Mata, Ana
    De Miguel, Maria P.
    Arnalich-Montiel, Francisco
    Nieto-Miguel, Teresa
    El Zarif, Mona
    Cadenas-Martin, Marta
    Lopez-Paniagua, Marina
    Galindo, Sara
    Calonge, Margarita
    Alio, Jorge L.
    CELLS, 2022, 11 (16)
  • [34] The Potential of Adipose-derived Stem Cells in Craniofacial Repair and Regeneration
    Marra, Kacey G.
    Rubin, J. Peter
    BIRTH DEFECTS RESEARCH PART C-EMBRYO TODAY-REVIEWS, 2012, 96 (01) : 95 - 97
  • [35] Application of Human Adipose-Derived Stem cells for Bone Regeneration of the Skull in Humans
    Torres-Guzman, Ricardo A.
    Huayllani, Maria T.
    Avila, Francisco R.
    Maita, Karla
    Zubair, Abba C.
    Quinones-Hinojosa, Alfredo
    Sarabia-Estrada, Rachel
    Forte, Antonio J.
    JOURNAL OF CRANIOFACIAL SURGERY, 2022, 33 (01) : 360 - 363
  • [36] Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration
    Suganuma, Seigo
    Tada, Kaoru
    Hayashi, Katsuhiro
    Takeuchi, Akihiko
    Sugimoto, Naotoshi
    Ikeda, Kazuo
    Tsuchiya, Hiroyuki
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2013, 18 (01) : 145 - 151
  • [37] The role of adipose-derived stromal cells and hydroxypropylmethylcellulose in engineering cartilage tissue in vivo
    Xu, YuQiao
    Zhang, Jing
    Ma, Yu
    Han, Yu
    Min, Jie
    Liang, YuanYuan
    Zhao, DaQing
    Qiu, JianHua
    CYTOTECHNOLOGY, 2014, 66 (05) : 779 - 790
  • [38] Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation
    Hamid, Adila A.
    Idrus, Ruszymah Bt Hj
    Bin Saim, Aminuddin
    Sathappan, Somasumdaram
    Chua, Kien-Hui
    CLINICS, 2012, 67 (02) : 99 - 106
  • [39] The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration
    Xie, Qing
    Wang, Zi
    Zhou, Huifang
    Yu, Zhang
    Huang, Yazhuo
    Sun, Hao
    Bi, Xiaoping
    Wang, Yefei
    Shi, Wodong
    Gu, Ping
    Fan, Xianqun
    BIOMATERIALS, 2016, 75 : 279 - 294
  • [40] Adipose-derived stem cells: A candidate for liver regeneration
    Yang, Dan
    Wang, Zhong Qiong
    Deng, Jia Qi
    Liao, Jing Yuan
    Wang, Xuan
    Xie, Jing
    Deng, Ming Ming
    Lu, Mu Han
    JOURNAL OF DIGESTIVE DISEASES, 2015, 16 (09) : 489 - 498