Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration

被引:32
作者
Liu, Fengyi [1 ,2 ,3 ]
Wang, Xu [1 ,2 ,3 ]
Li, Yuzhou [1 ,2 ,3 ]
Ren, Mingxing [1 ,2 ,3 ]
He, Ping [1 ,2 ,3 ]
Wang, Lu [1 ,2 ,3 ]
Xu, Jie [1 ,2 ,3 ]
Yang, Sheng [1 ,2 ,3 ]
Ji, Ping [1 ,2 ,3 ]
机构
[1] Chongqing Med Univ, Coll Stomatol, Chongqing, Peoples R China
[2] Chongqing Key Lab Oral Dis & Biomed Sci, Chongqing, Peoples R China
[3] Chongqing Municipal Key Lab Oral Biomed Engn High, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartilage regeneration; Stem cell therapy; Injectable hydrogel; GelMA; PAMAM; STEM-CELLS; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; TISSUE; DIFFERENTIATION; REPAIR; SCAFFOLDS; DESIGN;
D O I
10.1186/s13287-022-02705-6
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds.
引用
收藏
页数:15
相关论文
共 50 条
[1]   25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine [J].
Annabi, Nasim ;
Tamayol, Ali ;
Uquillas, Jorge Alfredo ;
Akbari, Mohsen ;
Bertassoni, Luiz E. ;
Cha, Chaenyung ;
Camci-Unal, Gulden ;
Dokmeci, Mehmet R. ;
Peppas, Nicholas A. ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2014, 26 (01) :85-124
[2]   Articular fibrocartilage - Why does hyaline cartilage fail to repair? [J].
Armiento, Angela R. ;
Alini, Mauro ;
Stoddart, Martin J. .
ADVANCED DRUG DELIVERY REVIEWS, 2019, 146 :289-305
[3]   Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review [J].
Bacakova, Lucie ;
Zarubova, Jana ;
Travnickova, Martina ;
Musilkova, Jana ;
Pajorova, Julia ;
Slepicka, Petr ;
Kasalkova, Nikola Slepickova ;
Svorcik, Vaclav ;
Kolska, Zdenka ;
Motarjemi, Hooman ;
Molitor, Martin .
BIOTECHNOLOGY ADVANCES, 2018, 36 (04) :1111-1126
[4]   Tissue engineering strategies to study cartilage development, degeneration and regeneration [J].
Bhattacharjee, Maumita ;
Coburn, Jeannine ;
Centola, Matteo ;
Murab, Sumit ;
Barbero, Andrea ;
Kaplan, David L. ;
Martin, Ivan ;
Ghosh, Sourabh .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 84 :107-122
[5]  
Buckwalter JA, 1998, ARTHRITIS RHEUM-US, V41, P1331, DOI 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO
[6]  
2-J
[7]   Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications [J].
Dai, Ru ;
Wang, Zongjie ;
Samanipour, Roya ;
Koo, Kyo-in ;
Kim, Keekyoung .
STEM CELLS INTERNATIONAL, 2016, 2016
[8]   New Advances in General Biomedical Applications of PAMAM Dendrimers [J].
de Araujo, Renan Vinicius ;
Santos, Soraya da Silva ;
Ferreira, Elizabeth Igne ;
Giarolla, Jeanine .
MOLECULES, 2018, 23 (11)
[9]   Fat tissue: an underappreciated source of stem cells for biotechnology [J].
Fraser, JK ;
Wulur, I ;
Alfonso, Z ;
Hedrick, MH .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (04) :150-154
[10]   The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy [J].
Garcia-Bernal, David ;
Garcia-Arranz, Mariano ;
Yanez, Rosa M. ;
Hervas-Salcedo, Rosario ;
Cortes, Alfonso ;
Fernandez-Garcia, Maria ;
Hernando-Rodriguez, Miriam ;
Quintana-Bustamante, Oscar ;
Bueren, Juan A. ;
Garcia-Olmo, Damian ;
Moraleda, Jose M. ;
Segovia, Jose C. ;
Zapata, Agustin G. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9