Thermal conductivity of Si nanostructures containing defects: Methodology, isotope effects, and phonon trapping

被引:20
作者
Gibbons, T. M. [1 ]
Kang, By. [1 ]
Estreicher, S. K. [1 ]
Carbogno, Christian [2 ]
机构
[1] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA
[2] Fritz Haber Inst, Max Planck Soc, Berlin, Germany
关键词
MOLECULAR-DYNAMICS; SILICON NANOWIRES; HEAT-CAPACITY; LOW TEMPERATURES; SYSTEMS; MODEL; PSEUDOPOTENTIALS; DEPENDENCE; CRYSTALS; HYDROGEN;
D O I
10.1103/PhysRevB.84.035317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A first-principles method to calculate the thermal conductivity in nanostructures that may contain defects or impurities is described in detail. The method mimics the so-called "laser-flash" technique to measure thermal conductivities. It starts with first-principles density-functional theory and involves the preparation of various regions of a supercell at slightly different temperatures. The temperature fluctuations are minimized without using a thermostat and, after averaging over random initial conditions, temperature changes as small as 5 K can be monitored (from 120 to 125 K). The changes to the phonon density of states and the specific heat induced by several atomic percent of impurities are discussed. The thermal conductivity of Si supercells is calculated as a function of the temperature and of the impurity content. For most impurities, the drop in thermal conductivity is unremarkable. However, there exist narrow ranges of impurity parameters (mass, bond strength, etc.) for which substantial drops in the thermal conductivity are predicted. These drops are isotope dependent and appear to be related to the vibrational lifetime of specific impurity-related modes.
引用
收藏
页数:10
相关论文
共 65 条
[1]  
Allen M. P., 2000, COMPUTER SIMULATIONS
[2]   Generalized theory of thermoelectric figure of merit [J].
Apostol, M. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (05)
[3]  
Artacho E, 1999, PHYS STATUS SOLIDI B, V215, P809, DOI 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO
[4]  
2-0
[5]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[6]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[7]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[8]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[9]   Vibrational lifetime of bond-center hydrogen in crystalline silicon [J].
Budde, M ;
Lüpke, G ;
Cheney, CP ;
Tolk, NH ;
Feldman, LC .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1452-1455
[10]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051