Shock physics in warm dense matter: A quantum hydrodynamics perspective

被引:20
|
作者
Graziani, F. [1 ]
Moldabekov, Z. [2 ,3 ]
Olson, B. [1 ]
Bonitz, M. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Kiel, Germany
关键词
jellium; quantum hydrodynamics; shock propagation; warm dense matter; RAYLEIGH-TAYLOR INSTABILITY; PLASMAS; SIMULATIONS; EQUATION; HYDROGEN; TRANSITION; EVOLUTION; JUPITER; SATURN; GROWTH;
D O I
10.1002/ctpp.202100170
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter (WDM), an exotic, highly compressed state of matter between solid and plasma phases, is of high current interest, in particular for astrophysics and inertial confinement fusion. For the latter, in particular the propagation of compression shocks is crucial. The main unknown in the shock propagation in WDM is the behaviour of the electrons since they are governed by correlations, quantum and spin effects that need to be accounted for simultaneously. Here we describe the shock dynamics of the warm dense electron gas using a quantum hydrodynamic model. From the numerical hydrodynamic simulations, we observe that the quantum Bohm pressure induces shear force that weakens the formation and strength of the shock. In addition, the Bohm pressure induces an electron density response that takes the form of oscillations. This is confirmed by the theoretical analysis of the early stage of the shock formation. Our theoretical and numerical analyses allow us to identify characteristic dimensionless shock propagation parameters at which the effect of the Bohm force is important.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Experimental methods for warm dense matter research
    Falk, Katerina
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6
  • [42] PROPERTIES OF WARM DENSE MATTER AT LOW ENTROPIES
    PETHICK, CJ
    RAVENHALL, DG
    LATTIMER, JM
    NUCLEAR PHYSICS A, 1984, 414 (03) : 517 - 528
  • [43] Warm dense matter and cooling of supernovae remnants
    Ankit Kumar
    H. C. Das
    S. K. Biswal
    Bharat Kumar
    S. K. Patra
    The European Physical Journal C, 2020, 80
  • [44] Excited states in warm and hot dense matter
    Starrett, C. E.
    Thelen, T. Q.
    Fontes, C. J.
    Rehn, D. A.
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [45] Linear and nonlinear excitations in warm dense matter
    Akbari-Moghanjoughi, M.
    Mohammadnejad, M.
    PHYSICS LETTERS A, 2019, 383 (19) : 2277 - 2284
  • [46] Warm dense matter and cooling of supernovae remnants
    Kumar, Ankit
    Das, H. C.
    Biswal, S. K.
    Kumar, Bharat
    Patra, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):
  • [47] Stopping power of a heterogeneous warm dense matter
    Casas, D.
    Andreev, A. A.
    Schnuerer, M.
    Barriga-Carrasco, M. D.
    Morales, R.
    Gonzalez-Gallego, L.
    LASER AND PARTICLE BEAMS, 2016, 34 (02) : 306 - 314
  • [48] NUCLEAR-PHYSICS OF DENSE MATTER
    PETHICK, CJ
    RAVENHALL, DG
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1991, 647 : 503 - 509
  • [49] Comparing ab initio and quantum-kinetic approaches to electron transport in warm dense matter
    Shaffer, N. R.
    Hu, S. X.
    Karasiev, V. V.
    Nichols, K. A.
    Starrett, C. E.
    White, A. J.
    PHYSICS OF PLASMAS, 2024, 31 (06)
  • [50] Quantum anomalies in dense matter
    Son, DT
    Zhitnitsky, AR
    PHYSICAL REVIEW D, 2004, 70 (07):