Shock physics in warm dense matter: A quantum hydrodynamics perspective

被引:20
|
作者
Graziani, F. [1 ]
Moldabekov, Z. [2 ,3 ]
Olson, B. [1 ]
Bonitz, M. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Kiel, Germany
关键词
jellium; quantum hydrodynamics; shock propagation; warm dense matter; RAYLEIGH-TAYLOR INSTABILITY; PLASMAS; SIMULATIONS; EQUATION; HYDROGEN; TRANSITION; EVOLUTION; JUPITER; SATURN; GROWTH;
D O I
10.1002/ctpp.202100170
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter (WDM), an exotic, highly compressed state of matter between solid and plasma phases, is of high current interest, in particular for astrophysics and inertial confinement fusion. For the latter, in particular the propagation of compression shocks is crucial. The main unknown in the shock propagation in WDM is the behaviour of the electrons since they are governed by correlations, quantum and spin effects that need to be accounted for simultaneously. Here we describe the shock dynamics of the warm dense electron gas using a quantum hydrodynamic model. From the numerical hydrodynamic simulations, we observe that the quantum Bohm pressure induces shear force that weakens the formation and strength of the shock. In addition, the Bohm pressure induces an electron density response that takes the form of oscillations. This is confirmed by the theoretical analysis of the early stage of the shock formation. Our theoretical and numerical analyses allow us to identify characteristic dimensionless shock propagation parameters at which the effect of the Bohm force is important.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Theory and simulation of warm dense matter targets
    Barnard, J. J.
    Armijo, J.
    More, R. M.
    Friedman, A.
    Kaganovich, I.
    Logan, B. G.
    Marinak, M. M.
    Penn, G. E.
    Sefkow, A. B.
    Santhanam, P.
    Stoltz, P.
    Veitzer, S.
    Wurtele, J. S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (1-2) : 275 - 283
  • [32] Experimental methods for warm dense matter research
    Katerina Falk
    HighPowerLaserScienceandEngineering, 2018, 6 (04) : 69 - 90
  • [33] Refractive index in warm and hot dense matter
    Faussurier, Gerald
    Blancard, Christophe
    Cosse, Phillipe
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [34] Experimental methods for warm dense matter research
    Falk, Katerina
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6
  • [35] Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter
    Dornheim, T.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [36] Electrical conductivity of copper in the low temperature region of warm dense matter
    Park, Sungbin
    Chi, Hsiao-Chien
    Lee, Hakmin
    Cho, Jongweon
    Chung, Kyoung-Jae
    PHYSICS OF PLASMAS, 2024, 31 (07)
  • [37] The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression
    Gourdain, Pierre-Alexandre
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (08) : 2547 - 2552
  • [38] Equation of state and transport properties of metals in warm dense matter regime
    Khomkin, A. L.
    Shumikhin, A. S.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (2-3) : 143 - 149
  • [39] Conductivity of warm dense matter including electron-electron collisions
    Reinholz, H.
    Roepke, G.
    Rosmej, S.
    Redmer, R.
    PHYSICAL REVIEW E, 2015, 91 (04)
  • [40] Theory of complex fluids in the warm dense matter regime and application to an unusual phase transition in liquid carbon
    Dharma-wardana, M. W. C.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (2-3) : 128 - 142