Shock physics in warm dense matter: A quantum hydrodynamics perspective

被引:23
作者
Graziani, F. [1 ]
Moldabekov, Z. [2 ,3 ]
Olson, B. [1 ]
Bonitz, M. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Kiel, Germany
关键词
jellium; quantum hydrodynamics; shock propagation; warm dense matter; RAYLEIGH-TAYLOR INSTABILITY; PLASMAS; SIMULATIONS; EQUATION; HYDROGEN; TRANSITION; EVOLUTION; JUPITER; SATURN; GROWTH;
D O I
10.1002/ctpp.202100170
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter (WDM), an exotic, highly compressed state of matter between solid and plasma phases, is of high current interest, in particular for astrophysics and inertial confinement fusion. For the latter, in particular the propagation of compression shocks is crucial. The main unknown in the shock propagation in WDM is the behaviour of the electrons since they are governed by correlations, quantum and spin effects that need to be accounted for simultaneously. Here we describe the shock dynamics of the warm dense electron gas using a quantum hydrodynamic model. From the numerical hydrodynamic simulations, we observe that the quantum Bohm pressure induces shear force that weakens the formation and strength of the shock. In addition, the Bohm pressure induces an electron density response that takes the form of oscillations. This is confirmed by the theoretical analysis of the early stage of the shock formation. Our theoretical and numerical analyses allow us to identify characteristic dimensionless shock propagation parameters at which the effect of the Bohm force is important.
引用
收藏
页数:17
相关论文
共 89 条
[1]  
Atzeni S., 2004, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter
[2]   Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics [J].
Baghramyan, Henrikh M. ;
Della Sala, Fabio ;
Ciraci, Cristian .
PHYSICAL REVIEW X, 2021, 11 (01)
[3]   Efficient grid-based method in nonequilibrium Green's function calculations: Application to model atoms and molecules [J].
Balzer, K. ;
Bauch, S. ;
Bonitz, M. .
PHYSICAL REVIEW A, 2010, 81 (02)
[4]   Multiphase equation of state for carbon addressing high pressures and temperatures [J].
Benedict, Lorin X. ;
Driver, Kevin P. ;
Hamel, Sebastien ;
Militzer, Burkhard ;
Qi, Tingting ;
Correa, Alfredo A. ;
Saul, A. ;
Schwegler, Eric .
PHYSICAL REVIEW B, 2014, 89 (22)
[5]  
Bezkrovniy V, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.057401
[6]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[7]   AN ONTOLOGICAL BASIS FOR THE QUANTUM-THEORY [J].
BOHM, D ;
HILEY, BJ ;
KALOYEROU, PN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 144 (06) :321-+
[8]   Ab initio simulation of warm dense matter [J].
Bonitz, M. ;
Dornheim, T. ;
Moldabekov, Zh A. ;
Zhang, S. ;
Hamann, P. ;
Kahlert, H. ;
Filinov, A. ;
Ramakrishna, K. ;
Vorberger, J. .
PHYSICS OF PLASMAS, 2020, 27 (04)
[9]   Quantum hydrodynamics for plasmas-Quo vadis? [J].
Bonitz, M. ;
Moldabekov, Zh A. ;
Ramazanov, T. S. .
PHYSICS OF PLASMAS, 2019, 26 (09)
[10]  
Bonitz M, 2013, PHYS REV E, V87, DOI 10.1103/PhysRevE.87.037102