Shock physics in warm dense matter: A quantum hydrodynamics perspective

被引:20
|
作者
Graziani, F. [1 ]
Moldabekov, Z. [2 ,3 ]
Olson, B. [1 ]
Bonitz, M. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Kiel, Germany
关键词
jellium; quantum hydrodynamics; shock propagation; warm dense matter; RAYLEIGH-TAYLOR INSTABILITY; PLASMAS; SIMULATIONS; EQUATION; HYDROGEN; TRANSITION; EVOLUTION; JUPITER; SATURN; GROWTH;
D O I
10.1002/ctpp.202100170
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter (WDM), an exotic, highly compressed state of matter between solid and plasma phases, is of high current interest, in particular for astrophysics and inertial confinement fusion. For the latter, in particular the propagation of compression shocks is crucial. The main unknown in the shock propagation in WDM is the behaviour of the electrons since they are governed by correlations, quantum and spin effects that need to be accounted for simultaneously. Here we describe the shock dynamics of the warm dense electron gas using a quantum hydrodynamic model. From the numerical hydrodynamic simulations, we observe that the quantum Bohm pressure induces shear force that weakens the formation and strength of the shock. In addition, the Bohm pressure induces an electron density response that takes the form of oscillations. This is confirmed by the theoretical analysis of the early stage of the shock formation. Our theoretical and numerical analyses allow us to identify characteristic dimensionless shock propagation parameters at which the effect of the Bohm force is important.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Progress in warm dense matter and planetary physics
    Institute of Physics, University of Rostock, Rostock
    18051, Germany
    Lect. Notes Comput. Sci. Eng., (203-234):
  • [2] WARM DENSE MATTER: ANOTHER APPLICATION FOR PULSED POWER HYDRODYNAMICS
    Reinovsky, R. E.
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 203 - 208
  • [3] Quantum molecular dynamical simulations of warm, dense matter
    Mazevet, S
    Kress, J
    Collins, LA
    ATOMIC PROCESSES IN PLASMAS, 2004, 730 : 139 - 148
  • [4] The quantum hypernetted chain model of warm dense matter
    Saumon, D.
    Starrett, C. E.
    Kress, J. D.
    Clerouin, J.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (02) : 150 - 153
  • [5] Exploring warm dense matter using quantum molecular dynamics
    Clerouin, J.
    Mazevet, S.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 1071 - 1075
  • [6] Quantum Monte Carlo techniques and applications for warm dense matter
    Ceperley, David (ceperley@illinois.edu), 1600, Springer Verlag (96):
  • [7] Quantum Modeling of Electronic Charge Density in Warm Dense Matter
    Miloshevsky, Gennady
    Hassanein, Ahmed
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2508 - 2509
  • [8] Transport properties of warm dense matter behind intense shock waves
    Mintsev, V. B.
    Fortov, V. E.
    LASER AND PARTICLE BEAMS, 2015, 33 (01) : 41 - 50
  • [9] Ultrabright X-ray laser scattering for dynamic warm dense matter physics
    Fletcher, L. B.
    Lee, H. J.
    Doeppner, T.
    Galtier, E.
    Nagler, B.
    Heimann, P.
    Fortmann, C.
    LePape, S.
    Ma, T.
    Millot, M.
    Pak, A.
    Turnbull, D.
    Chapman, D. A.
    Gericke, D. O.
    Vorberger, J.
    White, T.
    Gregori, G.
    Wei, M.
    Barbrel, B.
    Falcone, R. W.
    Kao, C. -C.
    Nuhn, H.
    Welch, J.
    Zastrau, U.
    Neumayer, P.
    Hastings, J. B.
    Glenzer, S. H.
    NATURE PHOTONICS, 2015, 9 (04) : 274 - 279
  • [10] Laser-shock compression of magnesium oxide in the warm-dense-matter regime
    Miyanishi, K.
    Tange, Y.
    Ozaki, N.
    Kimura, T.
    Sano, T.
    Sakawa, Y.
    Tsuchiya, T.
    Kodama, R.
    PHYSICAL REVIEW E, 2015, 92 (02):