Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance

被引:26
|
作者
Das, Priyanka [1 ]
Majumder, Arun Lahiri [1 ]
机构
[1] VIIM, Div Plant Biol, Bose Inst, CIT Scheme, P1-12, Kolkata 700054, W Bengal, India
关键词
Grape; Transcriptome; Salinity; RNA-seq; Salt-inducible gene; VITIS-VINIFERA L; STRESS-RESPONSE; ABIOTIC STRESS; EXPRESSION; ROOTSTOCKS; SULTANA; NETWORK; YIELD; WATER; ACCUMULATION;
D O I
10.1007/s10142-018-0628-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The negative effects of soil salinity towards grape yield depend upon salt concentration, cultivar type, developmental stage, and rootstock. Thompson Seedless variety of grape plant is considered moderately sensitive to salinity when grown upon its own root stock. In recent epoch, identification of key genes responsive to salinity offers hope to generate salinity-tolerant crop plants by their overexpression through genetic manipulation. In the present report, salt responsive transcriptome analysis of Thompson Seedless grape variety was done to identify vital genes involved in salinity tolerance which could be used further to generate salt liberal grape plant or other crop plants. Transcriptome libraries for control and 150-mM-NaCl-treated grape leaves were sequenced on Illumina platform where 714 genes were found to be differentially expressed. Gene ontology analysis indicated that under salinity conditions, the genes involved in metabolic process were highly enriched. Keto Encyclopedia of Genes and Genomes analysis revealed that, among the top 22 enriched pathways for the salt stress upregulated genes, the carbohydrate metabolism, signal transduction, energy metabolism, amino acid metabolism, biosynthesis of secondary metabolite, and lipid metabolism pathways possessed the largest number of transcripts. Key salinity-induced genes were selected and validated through qRT-PCR analysis which was comparable to RNA-seq results. Real-time PCR analysis also revealed that after 24days of salinity, the expression of most of the selected key genes was highest. These salinity-induced genes will be characterized further in a model plant and also in Vitis vinifera through transgenic approach to disclose their role towards salt tolerance.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 50 条
  • [1] Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance
    Priyanka Das
    Arun Lahiri Majumder
    Functional & Integrative Genomics, 2019, 19 : 61 - 73
  • [2] Comprehensive Transcriptome Profiling and Identification of Potential Genes Responsible for Salt Tolerance in Tall Fescue Leaves under Salinity Stress
    Amombo, Erick
    Li, Xiaoning
    Wang, Guangyang
    An, Shao
    Wang, Wei
    Fu, Jinmin
    GENES, 2018, 9 (10)
  • [3] Identification of Alkaline Salt Tolerance Genes in Brassica napus L. by Transcriptome Analysis
    Xu, Yu
    Tao, Shunxian
    Zhu, Yunlin
    Zhang, Qi
    Li, Ping
    Wang, Han
    Zhang, Yan
    Bakirov, Aldiyar
    Cao, Hanming
    Qin, Mengfan
    Wang, Kai
    Shi, Yiji
    Liu, Xiang
    Zheng, Lin
    Xu, Aixia
    Huang, Zhen
    GENES, 2022, 13 (08)
  • [4] De novo transcriptome analysis provides insights into the salt tolerance of Podocarpus macrophyllus under salinity stress
    Lijuan Zou
    Taotao Li
    Bingbing Li
    Jing He
    Chunli Liao
    Lianzhe Wang
    Shouyu Xue
    Tao Sun
    Xuan Ma
    Qinggui Wu
    BMC Plant Biology, 21
  • [5] De novo transcriptome analysis provides insights into the salt tolerance of Podocarpus macrophyllus under salinity stress
    Zou, Lijuan
    Li, Taotao
    Li, Bingbing
    He, Jing
    Liao, Chunli
    Wang, Lianzhe
    Xue, Shouyu
    Sun, Tao
    Ma, Xuan
    Wu, Qinggui
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [6] Identification of potential key genes affecting soybean growth under salt stress via transcriptome study
    Li, N.
    Li, Z.
    Fan, S.
    Pu, Y.
    Gong, Y.
    Tian, R.
    Guo, X.
    Ding, H.
    BIOLOGIA PLANTARUM, 2020, 64 : 692 - 700
  • [7] Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress
    Xiong, Xue
    Wei, Yu-qi
    Chen, Ji-hui
    Liu, Nan
    Zhang, Ying-jun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 151 : 323 - 333
  • [8] Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae
    Park, Won-Kun
    Yang, Ji-Won
    Kim, Hyun-Soo
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (04) : 567 - 575
  • [9] Comparative Transcriptome Profiling of Salinity-Induced Genes in Citrus Rootstocks with Contrasted Salt Tolerance
    Snoussi, Hager
    Askri, Hend
    Nacouzi, Diana
    Ouerghui, Imen
    Ananga, Anthony
    Najar, Asma
    El Kayal, Walid
    AGRICULTURE-BASEL, 2022, 12 (03):
  • [10] Identification and functional verification of salt tolerance hub genes in Salix matsudana based on QTL and transcriptome analysis
    Huang, Qianhui
    Hua, Xuan
    Zhang, Qi
    Pan, Wenjia
    Wang, Yuqing
    Liu, Guoyuan
    Wei, Hui
    Chen, Yanhong
    Zhang, Jian
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 215