Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: Implications for Parkinson disease

被引:84
作者
Van Laar, Victor S. [1 ,2 ,4 ]
Dukes, April A. [1 ,2 ,4 ]
Cascio, Michael [3 ]
Hastings, Teresa G. [1 ,2 ,4 ]
机构
[1] Univ Pittsburgh, Dept Neurol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Dept Mol Genet & Biochem, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Pittsburg Inst Neurodegenerat Dis, Pittsburgh, PA 15260 USA
关键词
Parkinson disease; mitochondria; PC12; cells; dopamine; dopamine quinone; proteomics; 2-D DIGE; mitofilin; mitochondrial creatine kinase;
D O I
10.1016/j.nbd.2007.11.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 66 条
[1]  
Beal MF, 2003, ANN NY ACAD SCI, V991, P120
[2]   Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency [J].
Bénit, P ;
Chretien, D ;
Kadhom, N ;
de Lonlay-Debeney, P ;
Cormier-Daire, V ;
Cabral, A ;
Peudenier, S ;
Rustin, P ;
Munnich, A ;
Rötig, A .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (06) :1344-1352
[3]   Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson's disease [J].
Berman, SB ;
Hastings, TG .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (03) :1127-1137
[4]   Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: Evidence for reduced sensitivity of brain mitochondria [J].
Berman, SB ;
Watkins, SC ;
Hastings, TG .
EXPERIMENTAL NEUROLOGY, 2000, 164 (02) :415-425
[5]  
Betarbet R, 2002, BRAIN PATHOL, V12, P499
[6]   Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore.: Implication for regulation of permeability transition by the kinases [J].
Beutner, G ;
Rück, A ;
Riede, B ;
Brdiczka, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1368 (01) :7-18
[7]   Quantitative study of mitochondrial complex I in platelets of parkinsonian patients [J].
Blandini, F ;
Nappi, G ;
Greenamyre, JT .
MOVEMENT DISORDERS, 1998, 13 (01) :11-15
[8]   Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism [J].
Bota, DA ;
Davies, KJA .
NATURE CELL BIOLOGY, 2002, 4 (09) :674-680
[9]   Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders [J].
Bota, DA ;
Davies, KJA .
MITOCHONDRION, 2001, 1 (01) :33-49
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3