Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding

被引:92
作者
Chan, Chi-Ho [1 ]
Yu, Tsz-Ha [1 ]
Wong, Kam-Bo [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Life Sci, Ctr Prot Sci & Crystallog, Shatin, Hong Kong, Peoples R China
关键词
ELECTROSTATIC INTERACTIONS CONTRIBUTE; THERMAL-STABILITY; PHOSPHOGLYCERATE KINASE; STRUCTURE VALIDATION; SURFACE; MOLPROBITY; REMOVAL; NETWORK; STATE; L30E;
D O I
10.1371/journal.pone.0021624
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to Delta C-p in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The Delta C-p of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of Delta C-p by 0.8-1.0 kJ mol(-1) K-1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing Delta C-p, leading to the up-shifting and broadening of the protein stability curves.
引用
收藏
页数:8
相关论文
共 63 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme [J].
Beadle, BM ;
Baase, WA ;
Wilson, DB ;
Gilkes, NR ;
Shoichet, BK .
BIOCHEMISTRY, 1999, 38 (08) :2570-2576
[5]   Electrostatic interactions across a beta-sheet [J].
Blasie, CA ;
Berg, JM .
BIOCHEMISTRY, 1997, 36 (20) :6218-6222
[6]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[7]   CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS [J].
DAOPIN, S ;
SAUER, U ;
NICHOLSON, H ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (29) :7142-7153
[8]   MolProbity: all-atom contacts and structure validation for proteins and nucleic acids [J].
Davis, Ian W. ;
Leaver-Fay, Andrew ;
Chen, Vincent B. ;
Block, Jeremy N. ;
Kapral, Gary J. ;
Wang, Xueyi ;
Murray, Laura W. ;
Arendall, W. Bryan, III ;
Snoeyink, Jack ;
Richardson, Jane S. ;
Richardson, David C. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W375-W383
[9]   Thermodynamic basis for the increased thermostability of CheY from the hyperthermophile Thermotoga maritima [J].
Deutschman, WA ;
Dahlquist, FW .
BIOCHEMISTRY, 2001, 40 (43) :13107-13113
[10]   The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins [J].
Elcock, AH .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (02) :489-502