Constraining hybrid natural inflation with recent CMB data

被引:9
|
作者
Alberto Vazquez, J. [1 ]
Carrillo-Gonzalez, Mariana [2 ,3 ]
German, Gabriel [4 ]
Herrera-Aguilar, Alfredo [5 ,6 ]
Carlos Hidalgo, Juan [4 ]
机构
[1] Brookhaven Natl Lab, Upton, NY 11973 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[5] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
[6] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2015年 / 02期
关键词
primordial black holes; inflation; physics of the early universe; cosmological parameters from CMBR; PARTICLE PHYSICS MODELS; UNIVERSE; FLATNESS; HORIZON;
D O I
10.1088/1475-7516/2015/02/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the Hybrid Natural Inflation (HNI) model and some of its realisations in the light of recent CMB observations, mainly Planck temperature and WMAP-9 polarization, and compare with the recent release of BICEP2 dataset. The inflationary sector of HNI is essentially given by the potential V(phi) = V-0(1 + acos (phi/f)), where a is a positive constant smaller or equal to one and f is the scale of (pseudo Nambu-Goldstone) symmetry breaking. We show that to describe the HNI model realisations we only need two observables; the spectral index n(s), the tensor-to-scalar ratio, and a free parameter in the amplitude of the cosine function a. We find that in order to make the HNI model compatible with the BICEP2 observations, we require a large positive running of the spectra. We find that this could overproduce primordial black holes (PBHs) in the most theoretically consistent case of the model. This situation could be alleviated if, as recently argued, the BICEP2 data do not correspond to primordial gravitational waves.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Constraining hybrid natural inflation with recent CMB data (vol 02, 039, 2015)
    Vazquez, J. Alberto
    Carrillo-Gonzalez, Marina
    German, Gabriel
    Herrera-Aguilar, Alfredo
    Hidalgo, Juan Carlos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (10):
  • [2] Constraining warm inflation with CMB data
    Bastero-Gil, Mar
    Bhattacharya, Sukannya
    Dutta, Koushik
    Gangopadhyay, Mayukh Raj
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (02):
  • [3] Is natural inflation in agreement with CMB data?
    dos Santos, F. B. M.
    Rodrigues, G.
    Rodrigues, J. G.
    de Souza, R.
    Alcaniz, J. S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (03):
  • [4] Constraining non-minimally coupled ?-exponential inflation with CMB data
    dos Santos, F. B. M.
    da Costa, S. Santos
    Silva, R.
    Benetti, M.
    Alcaniz, J. S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (06):
  • [5] A generalized method of constraining Warm Inflation with CMB data
    Kumar, Umang
    Das, Suratna
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (10):
  • [6] CMB constraints on natural inflation with gauge field production
    Alam, Khursid
    Dutta, Koushik
    Jaman, Nur
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (12):
  • [7] General bounds in Hybrid Natural Inflation
    German, Gabriel
    Herrera-Aguilar, Alfredo
    Hidalgo, Juan Carlos
    Sussman, Roberto A.
    Tapia, Jose
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (11):
  • [8] Inflation in the closed FLRW model and the CMB
    Bonga, Beatrice
    Gupt, Brajesh
    Yokomizo, Nelson
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (10):
  • [9] Particle production during inflation: a Bayesian analysis with CMB data from Planck 2018
    Naik, Suvedha Suresh
    Furuuchi, Kazuyuki
    Chingangbam, Pravabati
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (07):
  • [10] Stage IV CMB forecasts for warm inflation
    dos Santos, F. B. M.
    Rodrigues, G.
    de Souza, R.
    Alcaniz, J. S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (03):