INFINITE SCHRODINGER NETWORKS

被引:4
作者
Nathiya, N. [1 ]
Smyrna, C. Amulya [1 ]
机构
[1] Vellore Inst Technol Chennai, Div Math, Sch Adv Sci, Chennai 600127, Tamil Nadu, India
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2021年 / 31卷 / 04期
关键词
q-harmonic functions; q-superharmonic functions; Schrodinger network; hyperbolic Schrodinger network; parabolic Schrodinger network; integral representation; UNIQUENESS; OPERATORS;
D O I
10.35634/vm210408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrodinger operator (perturbed Laplace operator, q-Laplace) is defined to develop a discrete potential theory which has a model in the Schrodinger equation in the Euclidean spaces. The relation between Laplace operator Delta-theory and the Delta(q)-theory is investigated. In the Delta(q)-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative q-superharmonic functions is obtained in general case.
引用
收藏
页码:640 / 650
页数:11
相关论文
共 20 条
[1]   Schrodinger networks and their Cartesian products [J].
Abodayeh, K. ;
Anandam, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4342-4347
[2]  
Abodayeh K., 2016, APPL MATH SCI, V10, P1693, DOI [10.12988/ams.2016.63111, DOI 10.12988/AMS.2016.63111]
[3]  
Abodayeh K., 2008, Hokkaido Math. J., V37, P59, DOI [10.14492/hokmj/1253539587, /10.14492/hokmj/1253539587, DOI 10.14492/HOKMJ/1253539587]
[4]  
Alyusof R, 2020, COMPLEX ANAL OPER TH, V14, DOI 10.1007/s11785-019-00965-4
[5]  
Anandam V, 2016, REV ROUM MATH PURES, V61, P75
[6]  
Anandam V., 2011, Harmonic Functions and Potentials on Finite or Infinite Networks, DOI [10.1007/978-3-642-21399-1, DOI 10.1007/978-3-642-21399-1]
[7]  
[Anonymous], 1972, CONVEGNO CALCOLO PRO
[8]  
Bendito E, 2005, REV MAT IBEROAM, V21, P771
[9]  
Carmona A., 2014, ELECT NOTES DISCRETE, V46, P113, DOI [10.1016/j.endm.2014.08.016, DOI 10.1016/J.ENDM.2014.08.016]
[10]   The distribution of radial eigenvalues of the Euclidean Laplacian on homogeneous isotropic trees [J].
Cohen J.M. ;
Colonna F. ;
Singman D. .
Complex Analysis and its Synergies, 2021, 7 (2)