Classifying Transformer Winding Fault Type, Location and Extent using FRA based on Support Vector Machine

被引:3
|
作者
Ezziane, Hassane [1 ,3 ]
Houassine, Hamza [1 ,2 ]
Moulahoum, Samir [1 ,3 ]
Chaouche, Moustafa Sahnoune [1 ,3 ]
机构
[1] Univ Medea, Res Lab Elect Engn & Automat LREA, Medea, Algeria
[2] Univ Bouira, Dept Elect Engn, Lab Elect Engn & Automat LREA, Bouira, Algeria
[3] Univ Yahia Fares, Dept Elect Engn, Lab Elect Engn & Automat LREA, Medea, Algeria
来源
PRZEGLAD ELEKTROTECHNICZNY | 2022年 / 98卷 / 01期
关键词
Frequency response analysis (FRA); support vector machine (SVM); winding faults; diagnostic; FREQUENCY-RESPONSE ANALYSIS; DISSOLVED-GAS ANALYSIS; DIELECTRIC RESPONSE; ANALYSIS SFRA; DIAGNOSIS; CLASSIFICATION; DEFORMATION; TEMPERATURE; VIBRATION; CIRCUIT;
D O I
10.15199/48.2022.01.04
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, four common winding faults in power transformers (axial displacement (AD), serial capacitance variation (VSC), ground capacitance variation (VGC), open circuit (OC)) are simulated on a transformer winding model to classify the fault type, location and extent, by applying an intelligent methodology for diagnosing transformer faults, depends on building a comprehensive database by collecting Frequency Responses Analysis (FRA) related to health and faulty conditions and analyzing them using statistical and mathematical indicators, this base that can inventory all possible faults in terms of location and extent, which is used to train a support vector machine (SVM) classifier on the faults included in it, which is then able to classify any new data. The results of the tests showed that the proposed method is characterized by high accuracy in detecting the type of defect, determining its location and the extent of its occurrence, It also contributes to the development of the application of machine learning on transformers.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
  • [41] Fault Types Classification Using Support Vector Machine (SVM)
    Awalin, Lilik J.
    Naidu, Kanendra
    Suyono, Hadi
    5TH INTERNATIONAL CONFERENCE ON GREEN DESIGN AND MANUFACTURE 2019 (ICONGDM 2019), 2019, 2129
  • [42] Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine
    Pandarakone, Shrinathan Esakimuthu
    Mizuno, Yukio
    Nakamura, Hisahide
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3049 - 3056
  • [43] Indexing and Classifying Breathing Pattern for Male Runners Using Support Vector Machine
    Balbin, Jessie R.
    Sese, Julius T.
    Baje, John Zeus B.
    De Jesus, Joshua M.
    Pineda, Kevin Luis Markus M.
    Villanueva, Mc Kolleen S.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [44] Parametric Evaluation to Determine Type and Severity of Mechanical Fault in Transformer Winding Using Frequency Response Measurement
    Mitra, Sourav
    Pramanik, Saurav
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [45] Intelligent fault detection and analysis based on support vector machine and applications to Aeroengine
    Ren, Hongquan
    Fan, Quan-Yong
    Song, Xuekui
    Li, Hongxia
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2680 - 2685
  • [46] An Adaptive Threshold Based on Support Vector Machine for Fault Diagnosis
    Liu, Hongmei
    Lu, Chen
    Hou, Wenkui
    Wang, Shaoping
    PROCEEDINGS OF 2009 8TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY AND SAFETY, VOLS I AND II: HIGHLY RELIABLE, EASY TO MAINTAIN AND READY TO SUPPORT, 2009, : 907 - 911
  • [47] ARM Based Induction Motor Fault Detection Using Wavelet and Support Vector Machine
    Jagadanand, G.
    Dias, Fedora Lia
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [48] Operation of differential relay for power transformer using support vector machine
    Dave, Vikramaditya
    Sharma, Avdhesh
    2008 IEEE/PES TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION, VOLS 1-3, 2008, : 996 - 1001
  • [49] Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning
    Zhang, Chaolong
    He, Yigang
    Du, Bolun
    Yuan, Lifen
    Li, Bing
    Jiang, Shanhe
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 108 : 533 - 545
  • [50] Classifying random variables based on support vector machine and a neural network scheme
    Feizi, Amir
    Nazemi, Alireza
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (05) : 679 - 702