Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting

被引:3
|
作者
Kuehn, Uta [1 ]
Sander, Jan [1 ]
Gabrysiak, Katharina Nicole [1 ]
Giebeler, Lars [1 ]
Kosiba, Konrad [1 ]
Pilz, Stefan [1 ]
Neufeld, Kai [1 ]
Boehm, Anne Veronika [1 ]
Hufenbach, Julia Kristin [1 ,2 ]
机构
[1] Leibniz IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany
[2] TU Bergakad Freiberg, Inst Mat Sci, Gustav Zeuner Str 5, D-09599 Freiberg, Germany
关键词
additive manufacturing; centrifugal casting; laser powder bed fusion; mechanical properties; microstructure; tool steel; MICROSTRUCTURE; TRANSFORMATION; REFINEMENT; MARTENSITE; FEEDSTOCK; STRENGTH; BEHAVIOR;
D O I
10.3390/ma15207266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Improved mechanical properties of β metastable Ti alloys processed by laser powder bed fusion
    Duchaussoy, A.
    Marteleur, M.
    Jacques, P. J.
    Choisez, L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 887
  • [2] Processability approach for laser powder bed fusion of metallic alloys
    Castro-Espinosa, Homero Alberto
    Ruiz-Huerta, Leopoldo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 129 (3-4) : 1677 - 1687
  • [3] Metallurgical Defects, Microstructure, and Mechanical Properties of ECY768 Alloy Processed via Laser Powder Bed Fusion (Invited)
    Liu Haobo
    Wei Kaiwen
    Zhong Qiao
    Gong Jianqiang
    Li Xiangyou
    Zeng Xiaoyan
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (03)
  • [4] Beta Titanium Alloys Processed By Laser Powder Bed Fusion: A Review
    Colombo-Pulgarin, J. C.
    Biffi, C. A.
    Vedani, M.
    Celentano, D.
    Sanchez-Egea, A.
    Boccardo, A. D.
    Ponthot, J. -P.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6365 - 6388
  • [5] Processing defect, microstructure evolution and mechanical properties of laser powder bed fusion Al-12Si alloys
    Wang, Wei
    Zhang, Yubo
    Yue, Congcong
    Kong, Xiangqing
    Hao, Zhigang
    Wang, Tongmin
    Li, Tingju
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 681 - 696
  • [6] CuCrZr processed by laser powder bed fusion-Processability and influence of heat treatment on electrical conductivity, microstructure and mechanical properties
    Wegener, Thomas
    Koopmann, Julian
    Richter, Julia
    Krooss, Philipp
    Niendorf, Thomas
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (09) : 2570 - 2590
  • [7] Microstructure and Mechanical Properties of CoFeNiCuMn High-Entropy Alloys Produced by Laser Powder Bed Fusion
    Altinok, Sertac
    Buscher, Martin
    Beckers, Marco
    Kalay, Yunus Eren
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (04) : 711 - 729
  • [8] Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion
    Marchese, Giulio
    Lorusso, Massimo
    Parizia, Simone
    Bassini, Emilio
    Lee, Ji-Won
    Calignano, Flaviana
    Manfredi, Diego
    Terner, Mathieu
    Hong, Hyun-Uk
    Ugues, Daniele
    Lombardi, Mariangela
    Biamino, Sara
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 729 : 64 - 75
  • [9] The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion
    Xie, Haofeng
    Tang, Xiangpeng
    Chen, Xiaohong
    Sun, Fujia
    Dong, Liyan
    Tan, Yinxun
    Chu, Hao
    Zhou, Honglei
    Liu, Ping
    Fu, Shaoli
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 3322 - 3336
  • [10] Phase transformations during continuous cooling in Inconel 718 alloys manufactured by laser powder bed fusion and suction casting
    Zhao, Yunhao
    Zhang, Qiaofu
    Xiong, Wei
    Liangyan, Hao
    MATERIALS CHARACTERIZATION, 2022, 185