Desynchronization bifurcation of coupled nonlinear dynamical systems

被引:2
作者
Acharyya, Suman [1 ]
Amritkar, R. E. [1 ]
机构
[1] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
关键词
GENERALIZED SYNCHRONIZATION; PHASE SYNCHRONIZATION; STABILITY THEORY; CHAOS; TRANSITION; MOTION;
D O I
10.1063/1.3581154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the desynchronization bifurcation in the coupled Rossler oscillators. After the bifurcation the coupled oscillators move away from each other with a square root dependence on the parameter. We define system transverse Lyapunov exponents (STLE), and in the desynchronized state one is positive while the other is negative. We give a simple model of coupled integrable systems with quadratic nonlinearity that shows a similar phenomenon. We conclude that desynchronization is a pitchfork bifurcation of the transverse manifold. Cubic nonlinearity also shows the bifurcation, but in this case the STLEs are both negative. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581154]
引用
收藏
页数:7
相关论文
共 22 条
  • [1] [Anonymous], 1986, Radiophys. Quantum Electron, DOI DOI 10.1007/BF01034476
  • [2] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [3] INTRODUCTION TO BIFURCATION-THEORY
    CRAWFORD, JD
    [J]. REVIEWS OF MODERN PHYSICS, 1991, 63 (04) : 991 - 1037
  • [4] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [5] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
  • [6] SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS
    HEAGY, JF
    PECORA, LM
    CARROLL, TL
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4185 - 4188
  • [7] Iooss G., 1980, Elementary Stability and Bifurcation Theory
  • [8] Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
    Kocarev, L
    Parlitz, U
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1816 - 1819
  • [9] Master stability functions for synchronized coupled systems
    Pecora, LM
    Carroll, TL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (10) : 2109 - 2112
  • [10] Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems
    Pecora, LM
    [J]. PHYSICAL REVIEW E, 1998, 58 (01): : 347 - 360