Selective Area Epitaxy of GaAs Microstructures by Close-Spaced Vapor Transport for Solar Energy Conversion Applications

被引:12
作者
Greenaway, Ann L. [1 ]
Sharps, Meredith C. [1 ]
Boucher, Jason W. [2 ]
Strange, Lyndi E. [1 ]
Kast, Matthew G. [1 ]
Alon, Shaul [3 ]
Boettcher, Shannon W. [1 ]
机构
[1] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
III-V NANOWIRES; SEMICONDUCTOR NANOWIRES; CRYSTAL PHASE; ZINC BLENDE; GROWTH; SILICON; SUPERLATTICES; FABRICATION; EFFICIENCY; SUBSTRATE;
D O I
10.1021/acsenergylett.6b00217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Close-spaced vapor transport is a plausibly low-cost, high-rate method to grow HI-V materials for photovoltaic and photoelectrochemical device applications. We report the first homoepitaxial growth of GaAs microstructures on (100)- and (111)B-oriented GaAs substrates using patterned SiOx and Al2O3 masks and show that the resulting microstructured GaAs is an efficient semiconductor absorber for photovoltaic and photo-electrochemical applications. Cross-sectional transmission electron microscopy reveals an unusually low density of twin-plane defects in the (111)-oriented microstructures and the occurrence of stacked twin-plane defects in the (100)-oriented microstructures. Nonaqueous photoelectrochemical measurements show similar short-circuit currents of 9.7 and 9.1 mA cm(-2) for (100)- and (111)-oriented microstructures, respectively, with promising external quantum efficiencies. Together, the low twin density and good electronic properties indicate that micro- or nanostructures grown by selective area epitaxy in close-spaced vapor transport are promising for device applications that take advantage of their three-dimensional structure.
引用
收藏
页码:402 / 408
页数:7
相关论文
共 50 条
[1]  
[Anonymous], P 40 IEEE PHOT SPEC
[2]   Epitaxial growth of InP nanowires on germanium [J].
Bakkers, EPAM ;
Van Dam, JA ;
De Franceschi, S ;
Kouwenhoven, LP ;
Kaiser, M ;
Verheijen, M ;
Wondergem, H ;
Van der Sluis, P .
NATURE MATERIALS, 2004, 3 (11) :769-773
[3]   Epitaxial growth of III-V nanowires on group IV substrates [J].
Bakkers, Erik P. A. M. ;
Borgstrom, Magnus T. ;
Verheijen, Marcel A. .
MRS BULLETIN, 2007, 32 (02) :117-122
[4]   Evolution of GaAs nanowire geometry in selective area epitaxy [J].
Bassett, Kevin P. ;
Mohseni, Parsian K. ;
Li, Xiuling .
APPLIED PHYSICS LETTERS, 2015, 106 (13)
[5]   Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures [J].
Brown, Evan ;
Sheng, Chunyang ;
Shimamura, Kohei ;
Shimojo, Fuyuki ;
Nakano, Aiichiro .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (05)
[6]   Controlled polytypic and twin-plane superlattices in III-V nanowires [J].
Caroff, P. ;
Dick, K. A. ;
Johansson, J. ;
Messing, M. E. ;
Deppert, K. ;
Samuelson, L. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :50-55
[7]   Twin-Free GaAs Nanosheets by Selective Area Growth: Implications for Defect-Free Nanostructures [J].
Chi, Chun-Yung ;
Chang, Chia-Chi ;
Hu, Shu ;
Yeh, Ting-Wei ;
Cronin, Stephen B. ;
Dapkus, P. Daniel .
NANO LETTERS, 2013, 13 (06) :2506-2515
[8]   Nanoscale Growth of GaAs on Patterned Si(111) Substrates by Molecular Beam Epitaxy [J].
Chu, Chia-Pu ;
Arafin, Shamsul ;
Nie, Tianxiao ;
Yao, Kaiyuan ;
Kou, Xufeng ;
He, Liang ;
Wang, Chiu-Yen ;
Chen, Szu-Ying ;
Chen, Lih-Juann ;
Qasim, Syed M. ;
BenSaeh, Mohammed S. ;
Wang, Kang L. .
CRYSTAL GROWTH & DESIGN, 2014, 14 (02) :593-598
[9]   EPITAXY OF GAAS BY THE CLOSE-SPACED VAPOR TRANSPORT TECHNIQUE [J].
COTE, D ;
DODELET, JP ;
LOMBOS, BA ;
DICKSON, JI .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (09) :1925-1934
[10]  
Edwards D.F., 1985, Handbook of optical constants of solids