Graphene oxidation: Thickness-dependent etching and strong chemical doping

被引:754
作者
Liu, Li [1 ,2 ]
Ryu, Sunmin [1 ,2 ]
Tomasik, Michelle R. [2 ]
Stolyarova, Elena [1 ,2 ]
Jung, Naeyoung [1 ,2 ]
Hybertsen, Mark S. [3 ]
Steigerwald, Michael L. [1 ,2 ]
Brus, Louis E. [1 ,2 ]
Flynn, George W. [1 ,2 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Nanoscale Sci & Engn Ctr, New York, NY 10027 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
D O I
10.1021/nl0808684
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single-layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O-2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of similar to 0.5 eV. These oxygen species desorb partially in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O-2 atmosphere at room temperature. This strongly doped graphene is very different from "graphene oxide" made by mineral acid attack.
引用
收藏
页码:1965 / 1970
页数:6
相关论文
共 56 条
  • [1] REVERSIBLE CHARGE-TRANSFER COMPLEXES BETWEEN MOLECULAR-OXYGEN AND POLY(3-ALKYLTHIOPHENE)S
    ABDOU, MSA
    ORFINO, FP
    XIE, ZW
    DEEN, MJ
    HOLDCROFT, S
    [J]. ADVANCED MATERIALS, 1994, 6 (11) : 838 - 841
  • [2] [Anonymous], 1968, STAT PHYS
  • [3] Reversible binding of oxygen to aromatic compounds
    Aubry, JM
    Pierlot, C
    Rigaudy, J
    Schmidt, R
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (09) : 668 - 675
  • [4] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [5] Raman fingerprint of charged impurities in graphene
    Casiraghi, C.
    Pisana, S.
    Novoselov, K. S.
    Geim, A. K.
    Ferrari, A. C.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [6] FORMATION OF MONOLAYER PITS OF CONTROLLED NANOMETER SIZE ON HIGHLY ORIENTED PYROLYTIC-GRAPHITE BY GASIFICATION REACTIONS AS STUDIED BY SCANNING TUNNELING MICROSCOPY
    CHANG, HP
    BARD, AJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (11) : 4598 - 4599
  • [7] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [8] Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes
    Dukovic, G
    White, BE
    Zhou, ZY
    Wang, F
    Jockusch, S
    Steigerwald, ML
    Heinz, TF
    Friesner, RA
    Turro, NJ
    Brus, LE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (46) : 15269 - 15276
  • [9] KINETICS OF SINGLE-LAYER GRAPHITE OXIDATION - EVALUATION BY ELECTRON MICROSCOPY
    EVANS, EL
    GRIFFITH.RJ
    THOMAS, JM
    [J]. SCIENCE, 1971, 171 (3967) : 174 - &
  • [10] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)