A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS

被引:30
|
作者
Breidt, J. [1 ]
Butler, T. [2 ]
Estep, D. [1 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
adjoint problem; density estimation; inverse sensitivity analysis; model calibration; nonparametric density estimation; parameter estimation; sensitivity analysis; set-valued inverse; UNCERTAIN PARAMETERS; EVOLUTION;
D O I
10.1137/100785946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the map. This is a version of the model calibration or parameter estimation problem for a deterministic map. We assume that the uncertainty in the quantity of interest is represented by a random variable with a given distribution, and we use the law of total probability to express the inverse problem for the corresponding probability measure on the input space. Assuming that the map from the input space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by using the implicit function theorem to derive a method for approximating the set-valued inverse that provides an approximate quotient space representation of the input space. We then derive an efficient computational approach to compute a measure theoretic approximation of the probability measure on the input space imparted by the approximate set-valued inverse that solves the inverse problem.
引用
收藏
页码:1836 / 1859
页数:24
相关论文
共 50 条
  • [31] DEVELOPMENT OF A SENSITIVITY ANALYSIS METHOD FOR DYNAMIC NONLINEAR PROBLEMS
    KITAGAWA, Y
    HAGIWARA, I
    TORIGAKI, T
    JSME INTERNATIONAL JOURNAL SERIES I-SOLID MECHANICS STRENGTH OF MATERIALS, 1992, 35 (04): : 523 - 528
  • [32] PARAMETER SENSITIVITY AND INVERSE NYQUIST METHOD
    MCMORRAN, PD
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1971, 118 (06): : 802 - +
  • [33] On inverse problems for piezoelectric equation: stability analysis and numerical method
    Ding, Yibin
    Sun, Yuhui
    Xu, Xiang
    INVERSE PROBLEMS, 2018, 34 (07)
  • [34] Computational Method for Global Sensitivity Analysis of Reactor Neutronic Parameters
    Adetula, Bolade A.
    Bokov, Pavel M.
    SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2012, 2012
  • [35] An efficient computational method for solving large-scale differential sensitivity problems
    del Barrio, EP
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2003, 43 (04) : 353 - 372
  • [36] A method to measure the sensitivity of infrared detectors
    Xu Haitao
    Xu Lutie
    Li Tianpeng
    Jiang Tao
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 287 - 290
  • [37] I PROBLEMS OF METHOD
    不详
    NERVOUS AND MENTAL DISEASE MONOGRAPH SERIES, 1948, (73): : 3 - 92
  • [38] ON THE INVERSE SOURCE METHOD FOR SOLVING INVERSE SCATTERING PROBLEMS
    CHEW, WC
    WANG, YM
    OTTO, G
    LESSELIER, D
    BOLOMEY, JC
    INVERSE PROBLEMS, 1994, 10 (03) : 547 - 553
  • [39] A tutorial on the adjoint method for inverse problems
    Givoli, Dan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 380 (380)
  • [40] A NEWTONIAN METHOD FOR INVERSE EIGENVALUE PROBLEMS
    HADELER, KP
    NUMERISCHE MATHEMATIK, 1968, 12 (01) : 35 - &