Finite-beta equilibria for Wendelstein 7-X configurations using the Princeton Iterative Equilibrium Solver code

被引:5
作者
Arndt, S
Merkel, P
Monticello, DA
Reiman, AH
机构
[1] Max Planck Inst Plasma Phys, Teilinst Greifswald, EURATOM Assoc, D-17489 Greifswald, Germany
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1063/1.873367
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fixed- and free-boundary equilibria for Wendelstein 7-X (W7-X) [W. Lotz et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc. 13th Int. Conf. Washington, DC, 1990), (International Atomic Energy Agency, Vienna, 1991), Vol. 2, p. 603] configurations are calculated using the Princeton Iterative Equilibrium Solver (PIES) [A. H. Reiman et al., Comput. Phys. Commun., 43, 157 (1986)] to deal with magnetic islands and stochastic regions. Usually, these W7-X configurations require a large number of iterations for PIES convergence. Here, two methods have been successfully tested in an attempt to decrease the number of iterations needed for convergence. First, periodic sequences of different blending parameters are used. Second, the initial guess is vastly improved by using results of the Variational Moments Equilibrium Code (VMEC) [S. P. Hirshmann et al., Phys. Fluids 26, 3553 (1983)]. Use of these two methods have allowed verification of the Hamada condition and tendency of "self-healing'' of islands has been observed. (C) 1999 American Institute of Physics. [S1070-664X(99)03503-X].
引用
收藏
页码:1246 / 1252
页数:7
相关论文
共 30 条
[1]   3-DIMENSIONAL STELLARATOR EQUILIBRIA BY ITERATION [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1984, 27 (08) :2110-2114
[2]   A 3D CODE FOR MHD EQUILIBRIUM AND STABILITY [J].
CHODURA, R ;
SCHLUTER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 41 (01) :68-88
[3]   CONVERGENCE PROPERTIES OF A NONVARIATIONAL 3D MHD EQUILIBRIUM CODE [J].
GREENSIDE, HS ;
REIMAN, AH ;
SALAS, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (01) :102-136
[4]  
GRIEGER G, 1991, PLASMA PHYS CONTROLL, V3, P525
[5]   HYDROMAGNETIC EQUILIBRIA AND THEIR PROPER COORDINATES [J].
HAMADA, S .
NUCLEAR FUSION, 1962, 2 (1-2) :23-37
[6]   COMPUTATIONAL STUDY OF 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA IN TOROIDAL HELICAL SYSTEMS [J].
HARAFUJI, K ;
HAYASHI, T ;
SATO, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (01) :169-192
[7]   FORMATION AND SELF-HEALING OF MAGNETIC ISLANDS IN FINITE-BETA HELIAS EQUILIBRIA [J].
HAYASHI, T ;
SATO, T ;
MERKEL, P ;
NUHRENBERG, J ;
SCHWEEN, U .
PHYSICS OF PLASMAS, 1994, 1 (10) :3262-3268
[8]   MOMCON - A SPECTRAL CODE FOR OBTAINING 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
LEE, DK .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 39 (02) :161-172
[9]   3-DIMENSIONAL FREE-BOUNDARY CALCULATIONS USING A SPECTRAL GREENS-FUNCTION METHOD [J].
HIRSHMAN, SP ;
VANRIJ, WI .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 43 (01) :143-155
[10]   OPTIMIZED FOURIER REPRESENTATIONS FOR 3-DIMENSIONAL MAGNETIC-SURFACES [J].
HIRSHMAN, SP ;
MEIER, HK .
PHYSICS OF FLUIDS, 1985, 28 (05) :1387-1391