Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses

被引:133
|
作者
Negrao, S. [1 ,2 ]
Courtois, B. [3 ]
Ahmadi, N. [3 ]
Abreu, I. [1 ,2 ,4 ]
Saibo, N. [1 ,2 ]
Oliveira, M. M. [1 ,2 ]
机构
[1] Univ Nova Lisboa, ITQB Inst Tecnol Quim & Biol, P-2780157 Oeiras, Portugal
[2] IBET Inst Biol Expt & Tecnol, P-2780157 Oeiras, Portugal
[3] CIRAD Ctr Cooperat Int Rech Agron Dev, F-34398 Montpellier 5, France
[4] IBMC Inst Biol Mol & Celular, P-4150180 Oporto, Portugal
关键词
Oryza; salt tolerance QTLs; salt tolerance candidate genes; salt tolerant rice varieties; ORYZA-SATIVA L; QUANTITATIVE TRAIT LOCUS; EMBRYOGENESIS ABUNDANT PROTEIN; TRANSCRIPTION FACTOR FAMILY; GENOME-WIDE IDENTIFICATION; MARKER-ASSISTED SELECTION; NA+/H+ ANTIPORTER GENE; E3 UBIQUITIN LIGASE; MAP KINASE GENE; SALT TOLERANCE;
D O I
10.1080/07352689.2011.587725
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
One-fifth of irrigated agriculture is negatively affected by high soil salinity. The expected population growth, over 9 billion by 2050, enhances the pressure for agricultural production in marginal saline lands. Rice (Oryza sativa L.), the staple food for more than half of the world's population, is the most salt-sensitive cereal. The need for salt-tolerant rice varieties able to cope with several other stress conditions obviously puts a lot of pressure on breeders who must better comprehend the physiology and genetic control of salt tolerance. In spite of several good reviews recently published, an integrated vision of current information on rice tolerance to salt stress has been lacking. Here we present the most recent data on the salinity effect on rice physiology and stress adaptation, including implications on growth regulation and reproductive development. We have included an inventory of salt tolerance donors available for breeding programs and a comprehensive survey of current work on QTL detection and cloning as well as marker-assisted selection to introgress favorable alleles into elite rice lines. A schematic view of the rice chromosomes on which salt tolerance QTLs and candidate genes are positioned is also included. Finally, we focus on the most promising candidate genes involved in salt stress response. There, we discuss the available knowledge on salt stress signaling and ion homeostasis, LEAs and other stress-induced proteins, genes with unknown function and transcription regulators as well as the present knowledge on the role of post-translational modifications on the modulation of the response to salinity in rice. We conclude by highlighting still missing clues that could help to design better salt tolerant varieties, and we evaluate the significance of the data presented for the future of rice breeding and sustainability of the culture in marginal saline soils.
引用
收藏
页码:329 / 377
页数:49
相关论文
共 50 条
  • [1] Physiological and Molecular Responses of Barley Genotypes to Salinity Stress
    Jadidi, Omid
    Etminan, Alireza
    Azizi-Nezhad, Reza
    Ebrahimi, Asa
    Pour-Aboughadareh, Alireza
    GENES, 2022, 13 (11)
  • [2] Molecular and physiological responses to salinity stress in wheat (Titicum aestivum)
    Zerrad, W.
    Hillali, S.
    El Antri, S.
    Ibriz, M.
    Hmyene, A.
    FEBS JOURNAL, 2006, 273 : 365 - 365
  • [3] Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses
    Chourasia, Kumar Nishant
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Dev, Devanshu
    Kardile, Hemant Balasaheb
    Patil, Virupaksh U.
    Kumar, Amarjeet
    Vanishree, Girimalla
    Kumar, Dharmendra
    Bhardwaj, Vinay
    Meena, Jitendra Kumar
    Mangal, Vikas
    Shelake, Rahul Mahadev
    Kim, Jae-Yean
    Pramanik, Dibyajyoti
    LIFE-BASEL, 2021, 11 (06):
  • [4] Molecular and Physiological Responses of Rice and Weedy Rice to Heat and Drought Stress
    Piveta, Leonard Bonilha
    Roma-Burgos, Nilda
    Noldin, Jose Alberto
    Viana, Vivian Ebeling
    Oliveira, Claudia de
    Lamego, Fabiane Pinto
    Avila, Luis Antonio de
    AGRICULTURE-BASEL, 2021, 11 (01): : 1 - 23
  • [5] Comparison of the Morpho-Physiological and Molecular Responses to Salinity and Alkalinity Stresses in Rice
    Shaban, Abdelghany S.
    Safhi, Fatmah Ahmed
    Fakhr, Marwa A.
    Pruthi, Rajat
    Abozahra, Mahmoud S.
    El-Tahan, Amira M.
    Subudhi, Prasanta K.
    PLANTS-BASEL, 2024, 13 (01):
  • [6] Salinity and drought stress in plants: understanding physiological, biochemical and molecular responses
    Waseem, Muhammad
    Liu, Pingwu
    Aslam, Mehtab Muhammad
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [7] Arsenic Stress Responses and Tolerance in Rice: Physiological, Cellular and Molecular Approaches
    Jyotirmay KALITA
    Amit Kumar PRADHAN
    Zina Moni SHANDILYA
    Bhaben TANTI
    Rice Science, 2018, (05) : 235 - 249
  • [8] Arsenic Stress Responses and Tolerance in Rice: Physiological, Cellular and Molecular Approaches
    Kalita, Jyotirmay
    Pradhan, Amit Kumar
    Shandilya, Zina Moni
    Tanti, Bhaben
    RICE SCIENCE, 2018, 25 (05) : 235 - 249
  • [9] Arsenic Stress Responses and Tolerance in Rice: Physiological, Cellular and Molecular Approaches
    Jyotirmay KALITA
    Amit Kumar PRADHAN
    Zina Moni SHANDILYA
    Bhaben TANTI
    RiceScience, 2018, 25 (05) : 235 - 249
  • [10] Evaluating physiological responses of plants to salinity stress
    Negrao, S.
    Schmockel, S. M.
    Tester, M.
    ANNALS OF BOTANY, 2017, 119 (01) : 1 - 11