GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

被引:2
作者
Kim, Namkwon [1 ]
Kwak, Minkyu [2 ]
机构
[1] Chosun Univ, Dept Math, Kwangju 501759, South Korea
[2] Chonnam Natl Univ, Dept Math, Kwangju 500757, South Korea
关键词
Navier-Stokes equations; global existence; strong solution; REGULARITY;
D O I
10.4134/JKMS.2012.49.2.315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in Hi and the forcing function in L-P([, T); L-2), T > 0, 2 <= p <= +infinity satisfy a certain condition. This condition commonly appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain e tends to zero.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 16 条