A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations

被引:71
作者
Cheng, Xiujun [1 ,2 ]
Duan, Jinqiao [2 ,3 ]
Li, Dongfang [1 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
[4] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
关键词
Alternating direction implicit (ADI) method; Riesz space fractional nonlinear; Reaction-diffusion problem; Convergence; CONSERVATIVE DIFFERENCE SCHEME; FINITE-ELEMENT-METHOD; APPROXIMATION; BEHAVIOR; FEMS;
D O I
10.1016/j.amc.2018.10.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the construction and analysis of a novel linearized compact ADI scheme for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. Convergence of the proposed scheme is proved. The highlight is that the time discretization is achieved by applying a second-order, one-step and linearized method. The time discretization requires only one starting value, which is sharp contrast to the extrapolated Crank-Nicolson method or the usual second-order linearized schemes. Numerical examples on several fractional models are presented to confirm our theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:452 / 464
页数:13
相关论文
共 53 条
[1]   Modified implicit-explicit BDF methods for nonlinear parabolic equations [J].
Akrivis, G ;
Karakatsani, F .
BIT NUMERICAL MATHEMATICS, 2003, 43 (03) :467-483
[2]  
[Anonymous], 2014, 14 INT C FRACTIONAL
[3]   An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions [J].
Bu, Weiping ;
Xiao, Aiguo .
NUMERICAL ALGORITHMS, 2019, 81 (02) :529-545
[4]   Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :264-279
[5]   Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :355-364
[6]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[7]   Levy noise-induced escape in an excitable system [J].
Cai, Rui ;
Chen, Xiaoli ;
Duan, Jinqiao ;
Kurths, Juergen ;
Li, Xiaofan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[8]   On the Conservation of Fractional Nonlinear Schrodinger Equation's Invariants by the Local Discontinuous Galerkin Method [J].
Castillo, P. ;
Gomez, S. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) :1444-1467
[9]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[10]   A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance [J].
Celnik, Matthew ;
Patterson, Robert ;
Kraft, Markus ;
Wagner, Wolfgang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2758-2769