Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors

被引:75
作者
Li, Jianmin [1 ,2 ,3 ]
Kurra, Narendra [1 ,2 ]
Seredych, Mykola [1 ,2 ]
Meng, Xing [1 ,2 ,4 ]
Wang, Hongzhi [3 ]
Gogotsi, Yury [1 ,2 ,4 ]
机构
[1] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[4] Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Jilin, Peoples R China
关键词
MXene; Carbide-derived carbon; Asymmetric; Energy storage; Bipolar; PORE-SIZE; ENERGY-STORAGE; METAL CARBIDES; PERFORMANCE; GRAPHENE; ADSORPTION; BATTERIES; DISORDER; INSIGHTS; INCREASE;
D O I
10.1016/j.nanoen.2018.11.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes - two-dimensional (2D) transition metal carbides and nitrides - are an emerging class of high rate pseudocapacitive materials due to their combination of fast surface redox reactions with metallic conductivity. The ability of MXenes to spontaneously intercalate aqueous cations, broadens the scope for developing metal-ion capacitors beyond the protic electrolytes. In this study, 2D titanium carbide (MXene) free-standing films are employed to evaluate the dependence of electrochemical performance in aqueous Li and Na-ion electrolytes. By contrast, high surface area porous nanoscale carbide derived carbon (nano-CDC) is employed as a surface electrosorbing electrode at anodic potentials. Both, 2D MXene and zero-dimensional (0D) nano-CDC, with contrasting charge storage mechanisms and complementary potential windows of operation, enable the construction of an aqueous Li-ion capacitor with a 2 V voltage window of operation. This asymmetric device shows high rate capability (71% retention from 10 to 1000 mV s(-1)) and good cycling stability with 99.3% retention after 10,000 cycles. Furthermore, we demonstrate here the design of flexible bipolar carbide-carbon devices.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 56 条
  • [1] Alhabeb M., 2018, ANGEW CHEM, V130, P5542, DOI [DOI 10.1002/ANGE.201802232, 10.1002/ange.201802232]
  • [2] Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene)
    Alhabeb, Mohamed
    Maleski, Kathleen
    Anasori, Babak
    Lelyukh, Pavel
    Clark, Leah
    Sin, Saleesha
    Gogotsi, Yury
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7633 - 7644
  • [3] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [4] Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)
    Anasori, Babak
    Xie, Yu
    Beidaghi, Majid
    Lu, Jun
    Hosler, Brian C.
    Hultman, Lars
    Kent, Paul R. C.
    Gogotsi, Yury
    Barsoum, Michel W.
    [J]. ACS NANO, 2015, 9 (10) : 9507 - 9516
  • [5] Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries
    Bao, Weizhai
    Liu, Lin
    Wang, Chengyin
    Choi, Sinho
    Wang, Dan
    Wang, Guoxiu
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (13)
  • [6] 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries
    Bao, Weizhai
    Su, Dawei
    Zhang, Wenxue
    Guo, Xin
    Wang, Guoxiu
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) : 8746 - 8756
  • [7] Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
  • [8] Adsorption of gases in multimolecular layers
    Brunauer, S
    Emmett, PH
    Teller, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 : 309 - 319
  • [9] Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
  • [10] Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor
    Couly, Cedric
    Alhabeb, Mohamed
    Van Aken, Katherine L.
    Kurra, Narendra
    Gomes, Luisa
    Navarro-Suarez, Adriana M.
    Anasori, Babak
    Alshareef, Husam N.
    Gogotsi, Yury
    [J]. ADVANCED ELECTRONIC MATERIALS, 2018, 4 (01):