Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery

被引:184
|
作者
Lin, Chun-Er [1 ]
Zhang, Hong [2 ]
Song, You-Zhi [1 ]
Zhang, Yin [1 ]
Yuan, Jia-Jia [1 ]
Zhu, Bao-Ku [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, Key Lab Macromol Synth & Functionalizat MOE, ERC Membrane & Water Treatment MOE, Hangzhou 310027, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, Minist Educ, Key Lab High Performance Polymer Based Composites, Key Lab Polymer Composite & Funct Mat, Guangzhou 510275, Guangdong, Peoples R China
关键词
GEL POLYMER ELECTROLYTES; NONWOVEN SEPARATORS; HIGH-ENERGY; PERFORMANCE; MEMBRANE; ANODE; FABRICATION; CELLULOSE; CATHODE; CELL;
D O I
10.1039/c7ta08702k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The improvement of lithium ion transport properties, along with the ever-increasing demand for highpower density, is key to boosting the development of lithium-ion batteries. Here, we present a new class of carboxylated polyimide (PI) separator, which can be fabricated via an alkali treatment-based surface modification. The -COOH groups with unshared electron pairs were proposed to contribute to the desolvation of lithium ions and an increase in the lithium ion transport rate. Notably, the modification did not destroy the microstructure of the PI separator, and thus the effect of -COOH groups on the lithium ion transport properties was clearly demonstrated in this work. The result showed that the carboxylated PI separator was conducive to improving the lithium ion transference number (up to 0.87), which is four times higher than that for the original PI separator. More importantly, for the first time, the -COOH group was calculated to increase the lithium ion transport rate by more than six times. Benefiting from its high lithium ion transference number and slightly increased ionic conductivity, the cell assembled with the carboxylated PI separator achieved a better cycle performance and higher rate capability than that with the original PI separator.
引用
收藏
页码:991 / 998
页数:8
相关论文
共 50 条
  • [31] A Modified Ceramic-Coating Separator with High-Temperature Stability for Lithium-Ion Battery
    Shi, Chuan
    Dai, Jianhui
    Li, Chao
    Shen, Xiu
    Peng, Longqing
    Zhang, Peng
    Wu, Dezhi
    Sun, Daoheng
    Zhao, Jinbao
    POLYMERS, 2017, 9 (05):
  • [32] Strategies for Rational Design of High-Power Lithium-ion Batteries
    Wu, Yingpeng
    Huang, Xiangkang
    Huang, Lu
    Chen, Junhong
    ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (01) : 19 - 45
  • [33] Simulation of electrical abuse of high-power lithium-ion batteries
    Li, Zhao
    Niu, Huichang
    Jiang, Xi
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3468 - 3473
  • [34] All-in-All: Dead Lithium-Ion Battery to Active Lithium-Ion Capacitor
    Manohar, Akshay
    Viswanathan, Aranganathan
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    CHEMSUSCHEM, 2025, 18 (01)
  • [35] Lithium-Ion Battery Separator Prepared by Double-Matrix Encapsulation and Penetration
    Dong, Ting
    Yu, Zhen
    Choi, Jungwook
    Yoo, Kisoo
    Shim, Jaesool
    Ko, Tae Jo
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (06) : 6062 - 6073
  • [36] Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries
    Tan, Liwen
    Li, Zhenxing
    Shi, Ran
    Quan, Fengyu
    Wang, Bingbing
    Ma, Xiaomei
    Ji, Quan
    Tian, Xing
    Xia, Yanzhi
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) : 38175 - 38182
  • [37] Trapping Lithium Selenides with Evolving Heterogeneous Interfaces for High-Power Lithium-Ion Capacitors
    Tao, Shusheng
    Momen, Roya
    Luo, Zheng
    Zhu, Yirong
    Xiao, Xuhuan
    Cao, Ziwei
    Xiong, Dengyi
    Deng, Wentao
    Liu, Youcai
    Hou, Hongshuai
    Zou, Guoqiang
    Ji, Xiaobo
    SMALL, 2023, 19 (15)
  • [38] Probing current contribution of lithium-ion battery/lithium-ion capacitor multi-structure hybrid systems
    Guo, Zhang
    Liu, Zhien
    Sun, Xianzhong
    Du, Tao
    Zhang, Dong
    An, Yabin
    Zhang, Xiaohu
    Zhang, Haitao
    Zhang, Xiong
    Wang, Kai
    Ma, Yanwei
    JOURNAL OF POWER SOURCES, 2022, 548
  • [39] Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery
    Shi, Chuan
    Zhu, Jianwei
    Shen, Xiu
    Chen, Fuxing
    Ning, Fanggang
    Zhang, Hongdi
    Long, Yun-Ze
    Ning, Xin
    Zhao, Jinbao
    RSC ADVANCES, 2018, 8 (08): : 4072 - 4077
  • [40] A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries
    Byun, Seoungwoo
    Lee, Seung Hyun
    Song, Danoh
    Ryou, Myung-Hyun
    Lee, Yong Min
    Park, Won Ho
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 72 : 390 - 399