Sharp boundaries of solar wind plasma structures and their relationship to solar wind turbulence

被引:13
作者
Riazantseva, M. O. [1 ,2 ]
Khabarova, On. [1 ]
Zastenker, G. N. [1 ]
Richardson, J. D. [3 ]
机构
[1] Russian Acad Sci, Space Res Inst, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia
[3] MIT, Ctr Space Res, Cambridge, MA 02139 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
solar wind; solar wind discontinuity; turbulence; intermittency;
D O I
10.1016/j.asr.2007.05.004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth's magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1802 / 1806
页数:5
相关论文
共 50 条
  • [21] The near-Sun streamer belt solar wind: turbulence and solar wind acceleration
    Chen, C. H. K.
    Chandran, B. D. G.
    Woodham, L. D.
    Jones, S., I
    Perez, J. C.
    Bourouaine, S.
    Bowen, T. A.
    Klein, K. G.
    Moncuquet, M.
    Kasper, J. C.
    Bale, S. D.
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [22] Numerical Modeling of the Solar Wind Turbulence
    Kryukov, I. A.
    Pogorelov, N. V.
    Zank, G. P.
    Borovikov, S. N.
    PHYSICS OF THE HELIOSPHERE: A 10 YEAR RETROSPECTIVE, 2012, 1436 : 48 - 54
  • [23] Decay of magnetohydrodynamic turbulence in the expanding solar wind: WIND observations
    Verdini, Andrea
    Hellinger, Petr
    Landi, Simone
    Grappin, Roland
    Montagud-Camps, Victor
    Papini, Emanuele
    ASTRONOMY & ASTROPHYSICS, 2024, 690
  • [24] DISTRIBUTION OF MAGNETIC DISCONTINUITIES IN THE SOLAR WIND AND IN MAGNETOHYDRODYNAMIC TURBULENCE
    Zhdankin, Vladimir
    Boldyrev, Stanislav
    Mason, Joanne
    ASTROPHYSICAL JOURNAL LETTERS, 2012, 760 (02)
  • [25] Intermittency and Regularity in the Alfvenic range of Solar Wind Turbulence
    Mangeney, A.
    WAVES AND INSTABILITIES IN SPACE AND ASTROPHYSICAL PLASMAS, 2012, 1439 : 26 - 41
  • [26] VLASOV SIMULATIONS OF MULTI-ION PLASMA TURBULENCE IN THE SOLAR WIND
    Perrone, D.
    Valentini, F.
    Servidio, S.
    Dalena, S.
    Veltri, P.
    ASTROPHYSICAL JOURNAL, 2013, 762 (02)
  • [27] PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
    Hellinger, Petr
    Matteini, Lorenzo
    Landi, Simone
    Verdini, Andrea
    Franci, Luca
    Travnicek, Pavel M.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 811 (02)
  • [28] The solar wind as a turbulence laboratory
    Bruno R.
    Carbone V.
    Living Reviews in Solar Physics, 2005, 2 (1)
  • [29] Anisotropy of Alfvenic turbulence in the solar wind and numerical simulations
    Chen, C. H. K.
    Mallet, A.
    Yousef, T. A.
    Schekochihin, A. A.
    Horbury, T. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) : 3219 - 3226
  • [30] Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma
    Borovsky, Joseph E.
    Denton, Michael H.
    Smith, Charles W.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (04) : 2406 - 2424