Application of Deep Learning Methods in Diagnosis of Lung Nodules

被引:3
|
作者
Cao Bin [1 ]
Yang Feng [1 ]
Ma Jingang [2 ]
机构
[1] Shandong Prov Hosp Tradit Chinese Med, Jinan 250000, Shandong, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Sch Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
关键词
image processing; lung nodules; convolutional neural network; computer-aided diagnosis; deep learning; segmentation; classification; PULMONARY NODULES; U-NET; SEGMENTATION; IMAGES; ALGORITHMS; NETWORKS;
D O I
10.3788/LOP202158.1600005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lung cancer is the malignant tumor with the highest mortality rate in the world. Its early diagnosis can remarkably improve the survival rate of lung cancer patients. Deep learning can extract the hidden layer features of medical images and can complete the classification and segmentation of medical images. The application of deep learning methods for the early diagnosis of lung nodules has become a key point of research. This article introduces several databases commonly used in the field of lung nodule diagnosis and combines the relevant literature recently published at home and abroad to classify the latest research progress and summarize and analyze the application of deep learning frameworks for lung nodule image segmentation and classification. The basic ideas of various algorithms, network architecture forms, representative improvement schemes, and a summary of advantages and disadvantages are presented. Finally, some problems encountered while using deep learning for the diagnosis of pulmonary nodules, conclusions, and the development prospects are discussed. This study is expected to provide a reference for future research applications and accelerate the maturity of research and clinical applications in the concerned field.
引用
收藏
页数:14
相关论文
共 54 条
  • [11] Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT
    Han, Yoseob
    Ye, Jong Chul
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1418 - 1429
  • [12] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [13] Hou T.X., 2020, Comput. Eng. Des, V41, P1663
  • [14] SemiStarGAN: Semi-supervised Generative Adversarial Networks for Multi-domain Image-to-Image Translation
    Hsu, Shu-Yu
    Yang, Chih-Yuan
    Huang, Chi-Chia
    Hsu, Jane Yung-jen
    [J]. COMPUTER VISION - ACCV 2018, PT IV, 2019, 11364 : 338 - 353
  • [15] Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-task Learning
    Hussein, Sarfaraz
    Cao, Kunlin
    Song, Qi
    Bagci, Ulas
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 249 - 260
  • [16] Jia Ding, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P559, DOI 10.1007/978-3-319-66179-7_64
  • [17] Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
    Kermany, Daniel S.
    Goldbaum, Michael
    Cai, Wenjia
    Valentim, Carolina C. S.
    Liang, Huiying
    Baxter, Sally L.
    McKeown, Alex
    Yang, Ge
    Wu, Xiaokang
    Yan, Fangbing
    Dong, Justin
    Prasadha, Made K.
    Pei, Jacqueline
    Ting, Magdalena
    Zhu, Jie
    Li, Christina
    Hewett, Sierra
    Dong, Jason
    Ziyar, Ian
    Shi, Alexander
    Zhang, Runze
    Zheng, Lianghong
    Hou, Rui
    Shi, William
    Fu, Xin
    Duan, Yaou
    Huu, Viet A. N.
    Wen, Cindy
    Zhang, Edward D.
    Zhang, Charlotte L.
    Li, Oulan
    Wang, Xiaobo
    Singer, Michael A.
    Sun, Xiaodong
    Xu, Jie
    Tafreshi, Ali
    Lewis, M. Anthony
    Xia, Huimin
    Zhang, Kang
    [J]. CELL, 2018, 172 (05) : 1122 - +
  • [18] Semantic Autoencoder for Zero-Shot Learning
    Kodirov, Elyor
    Xiang, Tao
    Gong, Shaogang
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4447 - 4456
  • [19] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [20] Kuan K., 2017, DEEP LEARNING LUNG C