The Jordan structure of two-dimensional loop models

被引:26
作者
Morin-Duchesne, Alexi [1 ]
Saint-Aubin, Yvan [2 ]
机构
[1] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2011年
基金
加拿大自然科学与工程研究理事会;
关键词
conformal field theory; loop models and polymers; solvable lattice models; POTTS-MODEL; CONFORMAL-INVARIANCE; PERCOLATION; EXPONENTS; FUSION;
D O I
10.1088/1742-5468/2011/04/P04007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show how to use the link representation of the transfer matrix D-N of loop models on the lattice to calculate partition functions, at criticality, of the Fortuin-Kasteleyn model with various boundary conditions and parameter beta = 2cos(pi(1 - a/b)), a, b is an element of N and, more specifically, partition functions of the corresponding Q-Potts spin models, with Q = beta(2). The braid limit of D-N is shown to be a central element F-N(beta) of the Temperley-Lieb algebra TLN(beta), its eigenvalues are determined and, for generic beta, a basis of its eigenvectors is constructed using the Wenzl-Jones projector. With any element of this basis is associated a number of defects d, 0 <= d <= N, and the basis vectors with the same d span a sector. Because components of these eigenvectors are singular when b is an element of Z* and a is an element of 2Z + 1, the link representations of F-N and D-N are shown to have Jordan blocks between sectors d and d' when d - d' < 2b and (d + d')/2 equivalent to b - 1 mod2b (d > d'). When a and b do not satisfy the previous constraint, D-N is diagonalizable.
引用
收藏
页数:65
相关论文
共 40 条
  • [1] SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS
    ALCARAZ, FC
    BARBER, MN
    BATCHELOR, MT
    BAXTER, RJ
    QUISPEL, GRW
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : 6397 - 6409
  • [2] Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
  • [3] EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL
    BAXTER, RJ
    KELLAND, SB
    WU, FY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03): : 397 - 406
  • [4] Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy
    Behrend, RE
    Pearce, PA
    OBrien, DL
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) : 1 - 48
  • [5] INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY
    BELAVIN, AA
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 333 - 380
  • [6] Exact results for the universal area distribution of clusters in percolation,Ising, and Potts models
    Cardy, J
    Ziff, RM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (1-2) : 1 - 33
  • [7] Inhomogeneous loop models with open boundaries
    Di Francesco, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (27): : 6091 - 6120
  • [8] Conformal field theory at central charge c=0: A measure of the indecomposability (b) parameters
    Dubail, Jerome
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    [J]. NUCLEAR PHYSICS B, 2010, 834 (03) : 399 - 422
  • [9] Conformal two-boundary loop model on the annulus
    Dubail, Jerome
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    [J]. NUCLEAR PHYSICS B, 2009, 813 (03) : 430 - 459
  • [10] DUMINILCOPIN H, 2010, ARXIV10070575MATHPH