Illumination Invariant Thermal Face Recognition using Convolutional Neural Network

被引:3
作者
Lin, Shinfeng D. [1 ]
Chen, Kuanyuan [1 ]
机构
[1] Natl Dong Hwa Univ, Dept Comp Sci & Informat Engn, Hualien, Taiwan
来源
2019 4TH IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - ASIA (IEEE ICCE-ASIA 2019) | 2019年
关键词
D O I
10.1109/icce-asia46551.2019.8941593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An illumination invariant thermal face recognition using convolutional neural network is proposed. The proposed CNN model includes training phase and testing phase. The convolutional layer of CNN model is utilized to extract features. This produces a feature map in the output image and the feature maps are fed to the next layer. The output from the last pooling layer is flattened and fed into a fully connected layer (FC layer). The goal of FC layer is to employ these features for classifying the input image into various classes based on the training datasets. Compared with the traditional thermal face recognition, experimental results demonstrate the superiority of the proposed method.
引用
收藏
页码:83 / 84
页数:2
相关论文
共 4 条
[1]   Physiology-based face recognition in the thermal infrared spectrum [J].
Buddharaju, Pradeep ;
Pavlidis, Ioannis T. ;
Tsiamyrtzis, Panagiotis ;
Bazakos, Mike .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (04) :613-626
[2]   Face Recognition and Drunk Classification Using Infrared Face Images [J].
Hermosilla, Gabriel ;
Verdugo, Jose Luis ;
Farias, Gonzalo ;
Vera, Esteban ;
Pizarro, Francisco ;
Machuca, Margarita .
JOURNAL OF SENSORS, 2018, 2018
[3]   Thermal Face Recognition Under Temporal Variation Conditions [J].
Hermosilla Vigneau, Gabriel ;
Luis Verdugo, Jose ;
Farias Castro, Gonzalo ;
Pizarro, Francisco ;
Vera, Esteban .
IEEE ACCESS, 2017, 5 :9663-9672
[4]  
Simonyan Karen, 2015, INT C LEARN REPR 10