Knowledge-based approaches to drug discovery for rare diseases

被引:22
作者
Alves, Vinicius M. [1 ,2 ]
Korn, Daniel [1 ]
Pervitsky, Vera [1 ]
Thieme, Andrew [1 ]
Capuzzi, Stephen J. [1 ]
Baker, Nancy [3 ]
Chirkova, Rada [4 ]
Ekins, Sean [5 ]
Muratov, Eugene N. [1 ,6 ]
Hickey, Anthony [2 ]
Tropsha, Alexander [1 ]
机构
[1] Univ N Carolina, Lab Mol Modeling, Div Chem Biol & Med Chem, UNC Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, UNC Eshelman Sch Pharm, UNC Catalyst Rare Dis, Chapel Hill, NC 27599 USA
[3] ParlezChem, 123 W Union St, Hillsborough, NC 27278 USA
[4] North Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
[5] Collaborat Pharmaceut Inc, 840 Main Campus Dr,Lab 3510, Raleigh, NC 27606 USA
[6] Univ Fed Paraiba, Dept Pharmaceut Sci, Joao Pessoa, PB, Brazil
基金
美国国家卫生研究院;
关键词
Informatics; Rare diseases; Drug discovery; Data mining; Knowledge graphs; METFORMIN; CHALLENGES; PHENOTYPES; TRICKS; FUTURE;
D O I
10.1016/j.drudis.2021.10.014
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The conventional drug discovery pipeline has proven to be unsustainable for rare diseases. Herein, we discuss recent advances in biomedical knowledge mining applied to discovering therapeutics for rare diseases. We summarize current chemogenomics data of relevance to rare diseases and provide a perspective on the effectiveness of machine learning (ML) and biomedical knowledge graph mining in rare disease drug discovery. We illustrate the power of these methodologies using a chordoma case study. We expect that a broader application of knowledge graph mining and artificial intelligence (AI) approaches will expedite the discovery of viable drug candidates against both rare and common diseases.
引用
收藏
页码:490 / 502
页数:13
相关论文
共 130 条
[1]   The evolution of drug discovery: from phenotypes to targets, and back [J].
Al-Ali, Hassan .
MEDCHEMCOMM, 2016, 7 (05) :788-798
[2]  
Alves VM, 2020, APPROACHING COMPLEX, V2, P77
[3]   OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders [J].
Amberger, Joanna S. ;
Bocchini, Carol A. ;
Schiettecatte, Francois ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D789-D798
[4]   Synergistic drug combinations and machine learning for drug repurposing in chordoma [J].
Anderson, Edward ;
Havener, Tammy M. ;
Zorn, Kimberley M. ;
Foil, Daniel H. ;
Lane, Thomas R. ;
Capuzzi, Stephen J. ;
Morris, Dave ;
Hickey, Anthony J. ;
Drewry, David H. ;
Ekins, Sean .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Polypharmacology: Challenges and Opportunities in Drug Discovery [J].
Anighoro, Andrew ;
Bajorath, Juergen ;
Rastelli, Giulio .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (19) :7874-7887
[6]  
[Anonymous], AVEXIS REC FDA APPR
[7]  
[Anonymous], 1998, [No title captured]
[8]  
[Anonymous], 2015, Graph Databases
[9]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[10]   Future of Rare Diseases Research 2017-2027: An IRDiRC Perspective [J].
Austin, Christopher P. ;
Cutillo, Christine M. ;
Lau, Lilian P. L. ;
Jonker, Anneliene H. ;
Rath, Ana ;
Julkowska, Daria ;
Thomson, David ;
Terry, Sharon F. ;
de Montleau, Beatrice ;
Ardigo, Diego ;
Hivert, Virginie ;
Boycott, Kym M. ;
Baynam, Gareth ;
Kaufmann, Petra ;
Taruscio, Domenica ;
Lochmuller, Hanns ;
Suematsu, Makoto ;
Incerti, Carlo ;
Draghia-Akli, Ruxandra ;
Norstedt, Irene ;
Wang, Lu ;
Dawkins, Hugh J. S. .
CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (01) :21-27